Metal filament enhanced thermal energy storage applied to on-demand cooling of high power-density hand-held electronics

Author(s):  
Matt Yaquinto ◽  
Richard Wirtz
2012 ◽  
Vol 134 (1) ◽  
Author(s):  
R. A. Wirtz ◽  
K. Swanson ◽  
M. Yaquinto

An important design objective that is unique to hand-held units is the need to constrain two temperatures: the maximum temperature of the electronic components and the maximum skin temperature of the hand-held unit. The present work identifies and evaluates, through parametric modeling and experiments, the passive thermal energy storage volume characteristics and phase change material composite properties that are most suitable for thermal control of small form-factor, high power-density, hand-held electronics. A one-dimensional transient analytical model, based on an integral heat balance, is formulated and benchmarked. The model accurately simulates the heat storage/recovery process in a semi-infinite, “dry” phase change material slab. Dimensional analysis identifies the time and temperature metrics and nondimensional parameters that describe the heat storage/release process. Parametric analysis illustrates how changes in these nondimensional parameters affect thermal energy storage volume thermal response.


Author(s):  
Nilimapriyadarsini Swain ◽  
Saravanakumar Balasubramaniam ◽  
Manab Kundu ◽  
Lukas Schmidt-Mende ◽  
Ananthakumar Ramadoss

Supercapacitors have emerged as an outstanding candidate among numerous energy storage devices because of their long-term cycle life, high power density, and minimal safety concerns. As we know, the lower...


2017 ◽  
Vol 29 (12) ◽  
pp. 1605652 ◽  
Author(s):  
Long Zhang ◽  
Taewoo Kim ◽  
Na Li ◽  
Tae June Kang ◽  
Jun Chen ◽  
...  

2018 ◽  
Vol 6 (31) ◽  
pp. 8528-8537 ◽  
Author(s):  
Mingxing Zhou ◽  
Ruihong Liang ◽  
Zhiyong Zhou ◽  
Xianlin Dong

High energy storage density and high power density combined in novel BaTiO3-based lead-free ceramics for multilayer ceramic capacitors.


Author(s):  
Maike Johnson ◽  
Bernd Hachmann ◽  
Andreas J. Dengel ◽  
Michael Fiß ◽  
Matthias Hempel ◽  
...  

A latent heat thermal energy storage unit is being integrated into a heat- and power cogeneration plant in Saarland, Germany. This storage unit system will act as an intermediate backup to a heat recovery steam generator and gas turbine and is therefore situated in parallel to this unit, also between the feedwater pumps and the steam main. The steam required is superheated, with a nominal thermal power of 6 MW. The storage unit needs to provide steam for at least 15 minutes, resulting in a minimum capacity of 1.5 MWh. Integration of this storage unit will increase efficiency and decrease fossil fuel use by reducing the use of a conventional backup boiler, while maintaining the steam supply to the customer. The detailed design and a partial build of the storage unit has to-date been successfully concluded, as well as system design and build. Hot and cold commissioning of the storage unit, including filling of the storage unit, will commence following the completion of the storage unit. With the integration of this storage unit, fossil fuel use will be reduced in this power plant. Additionally, the production of superheated steam at a high power level in a latent heat storage unit and a comparison with simulation tools will be possible. This project includes the design, build, commissioning and testing of the storage unit. The paper discusses the detailed design of the storage and system, including the simulations of the system integration.


Author(s):  
Ya-Nan Liu ◽  
Huili Li ◽  
Xue Wang ◽  
Tian Lv ◽  
Keyi Dong ◽  
...  

Flexible supercapacitors have attracted increasing interests due to their high power density, long-term cycling life and excellent safety. Liking other energy storage devices, flexible supercapacitors show serious performance degradation as...


RSC Advances ◽  
2016 ◽  
Vol 6 (86) ◽  
pp. 83386-83392 ◽  
Author(s):  
Mengran Wang ◽  
Yexiang Liu ◽  
Kai Zhang ◽  
Fan Yu ◽  
Furong Qin ◽  
...  

Primary and rechargeable zinc/air batteries could be the next generation of energy storage devices because of their high power density and safety.


Sign in / Sign up

Export Citation Format

Share Document