Stochastic Algorithm for Designing Control Over Electrohydraulic Brake System

Author(s):  
S.I. Kolesnikova ◽  
E.L. Semenikhin
2021 ◽  
Vol 1948 (1) ◽  
pp. 012120
Author(s):  
BuDu Xu ◽  
Xuan Zhang ◽  
ShiXi Zhang ◽  
QingXuan Li ◽  
XiaoYu Zhu

Author(s):  
Yuan-Ting Lin ◽  
Chyuan-Yow Tseng ◽  
Jao-Hwa Kuang ◽  
Yeong-Maw Hwang

The combined brake system (CBS) is a mechanism that links the front and rear brakes for scooters. For two-wheeled scooters, a CBS with appropriate braking force distribution can reduce the risk of crashing accidents due to insufficient driving proficiency. The design of the braking force distribution for a CBS is challenging to the designer because it has to fulfill many requirements such as braking performance, ride comfort, reliability, and low costs. This paper proposes a systematic method to optimize the parameters of CBS. The evaluation indexes for the design are first discussed. The steps to determine the critical parameter to meet the indexes and a method to predict braking performance are developed. Finally, driving tests are carried out to verify the effectiveness of the proposed method. Experimental results showed that the deceleration of the tested scooter equipped with the designed CBS achieves an average mean fully developed deceleration (MFDD) of 5.246 m/s2, higher than the homologation requirement. Furthermore, the proposed method’s prediction of braking performance is in good agreement with the test results, with errors <1%.


2020 ◽  
Vol 15 (4) ◽  
pp. 543-549
Author(s):  
Haydar Kepekci ◽  
Ergin Kosa ◽  
Cüneyt Ezgi ◽  
Ahmet Cihan

Abstract The brake system of an automobile is composed of disc brake and pad which are co-working components in braking and accelerating. In the braking period, due to friction between the surface of the disc and pad, the thermal heat is generated. It should be avoided to reach elevated temperatures in disc and pad. It is focused on different disc materials that are gray cast iron and carbon ceramics, whereas pad is made up of a composite material. In this study, the CFD model of the brake system is analyzed to get a realistic approach in the amount of transferred heat. The amount of produced heat can be affected by some parameters such as velocity and friction coefficient. The results show that surface temperature for carbon-ceramic disc material can change between 290 and 650 K according to the friction coefficient and velocity in transient mode. Also, if the disc material gray cast iron is selected, it can change between 295 and 500 K. It is claimed that the amount of dissipated heat depends on the different heat transfer coefficient of gray cast iron and carbon ceramics.


2019 ◽  
Vol 9 (10) ◽  
pp. 2117
Author(s):  
Ming Chong Lim ◽  
Han-Lim Choi

Multi-agent task allocation is a well-studied field with many proven algorithms. In real-world applications, many tasks have complicated coupled relationships that affect the feasibility of some algorithms. In this paper, we leverage on the properties of potential games and introduce a scheduling algorithm to provide feasible solutions in allocation scenarios with complicated spatial and temporal dependence. Additionally, we propose the use of random sampling in a Distributed Stochastic Algorithm to enhance speed of convergence. We demonstrate the feasibility of such an approach in a simulated disaster relief operation and show that feasibly good results can be obtained when the confirmation and sample size requirements are properly selected.


1992 ◽  
Vol 92 (6) ◽  
pp. 3454-3454
Author(s):  
Peter H. Tsang
Keyword(s):  

2011 ◽  
Vol 1 (1) ◽  
pp. 41-48 ◽  
Author(s):  
P. Karthikeyan ◽  
Ch. Siva Chaitanya ◽  
S.C. Subramanian ◽  
N. Jagga Raju

2014 ◽  
Vol 556-562 ◽  
pp. 294-301 ◽  
Author(s):  
Long Han ◽  
Chun Tian ◽  
Yan Wang ◽  
Meng Ling Wu ◽  
Zhuo Jun Luo

This paper deals with the problem of braking process modeling. A subway train braking process simulation software is built, which composes of a GUI and a underlying model. The underlying model consists of a train model and a brake system model. The train model is simplified and built by assembling subcomponent element models of a railway vehicle. The brake system model is simplified and built based on experimental data in order to reduce computational effort. The GUI of the software can be use to input model parameters, display simulation results, and store simulation data. As a result of the simplifications of the modeling process, the developed software can perform real time simulation.


Sign in / Sign up

Export Citation Format

Share Document