scholarly journals Machine Learning-Assisted Analysis of Small Angle X-ray Scattering

Author(s):  
Piotr Tomaszewski ◽  
Shun Yu ◽  
Markus Borg ◽  
Jerk Ronnols
Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 672
Author(s):  
Christian Scherdel ◽  
Eddi Miller ◽  
Gudrun Reichenauer ◽  
Jan Schmitt

The requirements for new materials are increasing with each new application, which, in most cases, means an enhancement in the complexity of the development process. Nanoporous sol-gel-based materials, especially aerogels, are promising candidates for thermal superinsulation, electrodes for energy conversion and storage or high-end adsorbers. Their synthesis and processing route is complex, and the relationship between the material/processing parameters and the resulting structural and physical properties is not straightforward. Using small-angle X-ray scattering (SAXS) allows for fast structural characterization of both the gel and the resulting aerogel; combining these results with the respective physical properties of the aerogels and using these data as inputs for machine learning (ML) algorithms provide an approach to predict physical properties on the basis of a structural dataset. This data-driven strategy may be a feasible approach to speed up the development process. Thus, the study aimed to provide a proof of concept of ML-based model derivation from material, process and SAXS data to predict physical properties such as the solid-phase thermal conductivity (λs) of silica aerogels from a structural dataset. Here, we used different data subsets as predictors according to different states of synthesis (wet and dry) to evaluate the model performance.


2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


1981 ◽  
Vol 46 (7) ◽  
pp. 1675-1681 ◽  
Author(s):  
Josef Baldrian ◽  
Božena N. Kolarz ◽  
Henrik Galina

Porosity variations induced by swelling agent exchange were studied in a styrene-divinylbenzene copolymer. Standard methods were used in the characterization of copolymer porosity in the dry state and the results were compared with related structural parameters derived from small angle X-ray scattering (SAXS) measurements as developed for the characterization of two-phase systems. The SAXS method was also used for porosity determination in swollen samples. The differences in the porosity of dry samples were found to be an effect of the drying process, while in the swollen state the sample swells and deswells isotropically.


2020 ◽  
Vol 91 (12) ◽  
pp. 123501
Author(s):  
M. Šmíd ◽  
C. Baehtz ◽  
A. Pelka ◽  
A. Laso García ◽  
S. Göde ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Susyn Joan Kelly ◽  
Lizette duPlessis ◽  
John Soley ◽  
Frazer Noble ◽  
Hannah Carolyn Wells ◽  
...  

Abstract Objective Small angle X-ray scattering (SAXS) analysis is a sensitive way of determining the ultrastructure of collagen in tissues. Little is known about how parameters measured by SAXS are affected by preservatives commonly used to prevent autolysis. We determined the effects of formalin, glutaraldehyde, Triton X and saline on measurements of fibril diameter, fibril diameter distribution, and D-spacing of corneal collagen using SAXS analysis. Results Compared to sections of sheep and cats’ corneas stored frozen as controls, those preserved in 5% glutaraldehyde and 10% formalin had significantly larger mean collagen fibril diameters, increased fibril diameter distribution and decreased D-spacing. Sections of corneas preserved in Triton X had significantly increased collagen fibril diameters and decreased fibril diameter distribution. Those preserved in 0.9% saline had significantly increased mean collagen fibril diameters and decreased diameter distributions. Subjectively, the corneas preserved in 5% glutaraldehyde and 10% formalin maintained their transparency but those in Triton X and 0.9% saline became opaque. Subjective morphological assessment of transmission electron microscope images of corneas supported the SAXS data. Workers using SAXS analysis to characterize collagen should be alerted to changes that can be introduced by common preservatives in which their samples may have been stored.


Sign in / Sign up

Export Citation Format

Share Document