Path Length Computations on Graph Models of Computations

1969 ◽  
Vol C-18 (6) ◽  
pp. 530-536 ◽  
Author(s):  
D.F. Martin ◽  
G. Estrin
1970 ◽  
Vol 17 (3) ◽  
pp. 543-554 ◽  
Author(s):  
J. L. Baer ◽  
D. P. Bovet ◽  
G. Estrin

Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


2000 ◽  
Vol 627 ◽  
Author(s):  
Gabriel Popescu ◽  
Aristide Dogariu

ABSTRACTIn many industrial applications involving granular media, knowledge about the structural transformations suffered during the industrial process is desirable. Optical techniques are noninvasive, fast, and versatile tools for monitoring such transformations. We have recently introduced optical path-length spectroscopy as a new technique for random media investigation. The principle of the method is to use a partially coherent source in a Michelson interferometer, where the fields from a reference mirror and the sample are combined to obtain an interference signal. When the system under investigation is a multiple-scattering medium, by tuning the optical length of the reference arm, the optical path-length probability density of light backscattered from the sample is obtained. This distribution carries information about the structural details of the medium. In the present paper, we apply the technique of optical path-length spectroscopy to investigate inhomogeneous distributions of particulate dielectrics such as ceramics and powders. The experiments are performed on suspensions of systems with different solid loads, as well as on powders and suspensions of particles with different sizes. We show that the methodology is highly sensitive to changes in volume concentration and particle size and, therefore, it can be successfully used for real-time monitoring. In addition, the technique is fiber optic-based and has all the advantages associated with the inherent versatility.


Author(s):  
Evgenia R. Muntyan

The article analyzes a number of methods of knowledge formation using various graph models, including oriented, undirected graphs with the same type of edges and graphs with multiple and different types of edges. This article shows the possibilities of using graphs to represent a three-level structure of knowledge in the field of complex technical systems modeling. In such a model, at the first level, data is formed in the form of unrelated graph vertices, at the second level – information presented by a related undirected graph, and at the third level – knowledge in the form of a set of graph paths. The proposed interpretation of the structure of knowledge allows to create new opportunities for analytical study of knowledge and information, their properties and relationships.


2019 ◽  
Vol 24 (2) ◽  
pp. 88-104
Author(s):  
Ilham Aminudin ◽  
Dyah Anggraini

Banyak bisnis mulai muncul dengan melibatkan pengembangan teknologi internet. Salah satunya adalah bisnis di aplikasi berbasis penyedia layanan di bidang moda transportasi berbasis online yang ternyata dapat memberikan solusi dan menjawab berbagai kekhawatiran publik tentang layanan transportasi umum. Kemacetan lalu lintas di kota-kota besar dan ketegangan publik dengan keamanan transportasi umum diselesaikan dengan adanya aplikasi transportasi online seperti Grab dan Gojek yang memberikan kemudahan dan kenyamanan bagi penggunanya Penelitian ini dilakukan untuk menganalisa keaktifan percakapan brand jasa transportasi online di jejaring sosial Twitter berdasarkan properti jaringan. Penelitian dilakukan dengan dengan mengambil data dari percakapan pengguna di social media Twitter dengan cara crawling menggunakan Bahasa pemrograman R programming dan software R Studio dan pembuatan model jaringan dengan software Gephy. Setelah itu data dianalisis menggunakan metode social network analysis yang terdiri berdasarkan properti jaringan yaitu size, density, modularity, diameter, average degree, average path length, dan clustering coefficient dan nantinya hasil analisis akan dibandingkan dari setiap properti jaringan kedua brand jasa transportasi Online dan ditentukan strategi dalam meningkatkan dan mempertahankan keaktifan serta tingkat kehadiran brand jasa transportasi online, Grab dan Gojek.


Author(s):  
Mark Newman

The study of networks, including computer networks, social networks, and biological networks, has attracted enormous interest in recent years. The rise of the Internet and the wide availability of inexpensive computers have made it possible to gather and analyse network data on an unprecendented scale, and the development of new theoretical tools has allowed us to extract knowledge from networks of many different kinds. The study of networks is broadly interdisciplinary and developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology, and the social science. This book brings together the most important breakthroughts in each of these fields and presents them in a unified fashion, highlighting the strong interconnections between work in different areas. Topics covered include the measurement of networks; methods for analysing network data, including methods developed in physics, statistics, and sociology; fundamentals of graph theory; computer algorithms, including spectral algorithms and community detection; mathematical models of networks such as random graph models and generative models; and models of processes taking place on networks.


Sign in / Sign up

Export Citation Format

Share Document