scholarly journals Event-Based Recursive Distributed Filtering Over Wireless Sensor Networks

2015 ◽  
Vol 60 (9) ◽  
pp. 2470-2475 ◽  
Author(s):  
Qinyuan Liu ◽  
Zidong Wang ◽  
Xiao He ◽  
D. H. Zhou
2009 ◽  
Vol 53 (12) ◽  
pp. 1980-1996 ◽  
Author(s):  
Eduardo F. Nakamura ◽  
Heitor S. Ramos ◽  
Leandro A. Villas ◽  
Horacio A.B.F. de Oliveira ◽  
Andre L.L. de Aquino ◽  
...  

Author(s):  
Asfandyar Khan ◽  
Azween Abdullah ◽  
Nurul Hasan

Wireless sensor networks (WSANs) are increasingly being used and deployed to monitor the surrounding physical environments and detect events of interest. In wireless sensor networks, energy is one of the primary issues and requires the conservation of energy of the sensor nodes, so that network lifetime can be maximized. It is not recommended as a way to transmit or store all data of the sensor nodes for analysis to the end user. The purpose of this “Event Based Detection” Model is to simulate the results in terms of energy savings during field activities like a fire detection system in a remote area or habitat monitoring, and it is also used in security concerned issues. The model is designed to detect events (when occurring) of significant changes and save the data for further processing and transmission. In this way, the amount of transmitted data is reduced, and the network lifetime is increased. The main goal of this model is to meet the needs of critical condition monitoring applications and increase the network lifetime by saving more energy. This is useful where the size of the network increases. Matlab software is used for simulation.


The discovery and the use of many wireless technologies are paving way for new remote monitoring applications. The sensing devices are becoming popular because of their flexibility, performance, low cost and portability. Wireless Sensor Networks (WSN) is a good alternative to wired systems because of easy deployment in remote areas. Wireless Sensor Networks are used in different domains for various applications because of their salient characteristics like reduced power consumption, scalability, ability to respond immediately within a short span of time, reliability, dynamic in nature, low cost and easy installation. The main objective of this paper work is to find a suitable energy efficient, scalable and reliable communication protocols for intra-cluster and intercluster communication. Therefore the proposed research work follows three different phases. To achieve the desired results, the proposed research work concentrates on three protocols namely Energy Efficient and Reliable Clustering Routing Protocol (EERCRP), Energy Efficient and Reliable MAC Protocol (EERMAC) and Energy Efficient and Reliable Hybrid Transport Protocol (EERHTP).EERCRP and EERMAC are intra-cluster communication protocols that help in cluster formation and effective data sensing. EERHTP is a transport layer protocol that is used for inter-cluster communication. All the above protocols are evaluated using network simulator NS2 for their performance analysis. EERCRP is compared with PASCC and PCDCC which from the root level header node are existing congestion and queue based hybrid clustering protocols. The proposed EERCRP follows hierarchical cluster formation where the leader node is selected based on queue length, residual energy of the node and distance. It is efficient than the existing methods in terms of energy and reliability metrics.EERMAC is compared with existing MAC protocols namely SMAC, IEEE 802.11 EDCA and EA-MAC. SMAC follows traditional TDMA or CSMA method of data access. They are suitable only for periodic data sensing. The proposed EERMAC allows hybrid data sensing consisting of both periodic and event based data which are classified using priority levels. Event based data is assigned higher priority than periodic data. Queues are used for storing both types of data using various levels of threshold values. EERMAC uses CSMA/CA method for event based data. Variable TDMA method is used for event based and periodic data. EERHTP is a transport layer protocol that uses two types of reliability models namely ACK and NACK depending on the type of data. All the three protocols are evaluated both for energy and reliability metrics such as total energy consumption, residual energy comparison, energy consumption per packet, packet delivery ratio, delay, packet drop, jitter, throughput and network routing overhead. Thus it is concluded that all the three protocols are more optimal than the existing protocols and prove to be the best protocols for intracluster and inter-cluster communications.


The network delay and power consumptions are the two main factors governing the efficiency of wireless sensor networks. In this paper, our goal is to minimize the delay and maximize the lifespan of event-based wireless sensor networks in which activities occur infrequently.In such architectures, most of the power is fed on when the radios are on, ready for a packet to arrive.Sleep–wake scheduling is a highly efficient mechanism to prolong the lifetime of these power-constrained wireless sensor networks. However, sleep–wake scheduling could provide result with considerable delays. This research attempts to limit these delays by developing “anycast” based packet forwarding schemes that places each node opportunistically forwards a packet to the first neighboring node which wakes up amongst more than one candidate nodes.In this paper, we propose to optimize the anycast forwarding schemes by minimizing the anticipated packetdelivery delays from the sensor nodes to the sink node. Based on this analysis, we then provide a solution to the joint control problem of how to optimally manage the architecture parameters of the sleep–wake scheduling protocol and the any-cast packetforwarding protocol to maximize the network lifetime, with reference to a constraint on the expected end-to-end packetarriving delay.


2020 ◽  
Vol 16 (1) ◽  
pp. 66-74
Author(s):  
René Bergelt ◽  
Wolfram Hardt

Wireless sensor networks (WSN) are deployed in a multitude of applications both in industrial and academic fields. In recent years, due to the emerge of Internet of Things (IoT) technologies and Vehicle2X communication scenarios, novel challenges for wireless sensor network platforms - regarding hardware and software - arose. Thus, challenges known from big data processing have reached the WSN scope and consequently approaches and methods have been devised to handle these. One such approach is queriable wireless sensor networks which enable their users the specification of sensing tasks in a declarative way without the need to re-program nodes in case the application requirements change. As many current WSN applications feature active parts with which nodes can directly influence their environment, the term wireless sensor actuator networks (WSAN) has been coined, setting such networks apart from solely passively measuring networks.In this article, we will present a short introduction to big data processing in wireless sensor networks which motivates the usage of queriable networks. We will show that in order to enable a WSAN to carry out actions energy-efficiently and in a timely manner, an event-based action model is favorable. Additionally, we will demonstrate how such an event system can be used to improve sub query performance in WSNs. We conclude with an evaluation regarding the benefit of combining this approach with wake-up receiver technologies based on a qualitative energy efficiency definition for WSN.


Sign in / Sign up

Export Citation Format

Share Document