scholarly journals An Average Allowable Transmission Interval Condition for the Stability of Networked Control Systems

Author(s):  
Stefan H. J. Heijmans ◽  
Romain Postoyan ◽  
Dragan Nesic ◽  
W.P.M.H. Heemels
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhongda Lu ◽  
Lijing Wang ◽  
Fengbin Zhang ◽  
Fengxia Xu

This paper considers the stability andH∞control problem of networked control systems with time delay. Taking into account the influence of network with delay, unknown input disturbance, and uncertainties of the system modeling, meanwhile we establish a precise, closed-loop model for networked control systems with time delay. By selecting a proper Lyapunov-Krasovskii function and using Lyapunov theorem, a sufficient condition for stability of the system in the form of LMI is demonstrated, corresponding controller parameters are acquired, and the convergence of the control algorithm is proved. The simulation example shows that the construction of the network robust control system with time delay indeed improves the stability performance of the system, which indicates the effectiveness of the design.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zeming Fan ◽  
Xiaojun Yu ◽  
Hao Wan ◽  
Meilin Kang ◽  
Yuan Liu ◽  
...  

As a key feature of networked control systems (NCSs), the time delays induced by communication medium sharing and data exchange over the system components could largely degrade the NCS performances or may even cause system instability, and thus, it is of critical importance to reduce time delays within NCSs. This paper studies the time-delay reduction problem in distributed NCSs and presents a dual-way data scheduling mechanism for time-delay reductions in delay-bounded NCSs with time-varying delays. We assess the time delays and their influences on the NCSs first with various delay factors being considered and then describe a one-way scheduling mechanism for network-delay reductions in NCSs. Based upon such a method, a dual-way scheduling algorithm is finally proposed for distributed NCSs with different types of transmitted data packets. Experiments are conducted on a remote teaching platform to verify the effectiveness of the proposed dual-way scheduling mechanism. Results demonstrate that, with the stability time-delay bound considered within the scheduling process, the proposed mechanism is effective for NCS time-delay reductions while addressing the stability, control accuracy, and settling time issues efficiently. Such a proposed mechanism could also be implemented together with some other existing control algorithms for time-delay reductions in NCSs. Our work could provide both useful theoretical guidance and application references for stable tracking control of delay-bounded NCSs.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1535 ◽  
Author(s):  
Bongsang Park ◽  
Junghyo Nah ◽  
Jang-Young Choi ◽  
Ick-Jae Yoon ◽  
Pangun Park

The stability guarantee of wireless networked control systems is still challenging due to the complex interaction among the layers and the vulnerability to network faults, such as link and node failures. In this paper, we propose a robust wireless sensor and actuator network (R-WSAN) to maintain the control stability of multiple plants over the spatial-temporal changes of wireless networks. The proposed joint design protocol combines the distributed controller of control systems and the clustering, resource scheduling, and control task sharing scheme of wireless networks over a hierarchical cluster-based network. In particular, R-WSAN decouples the tasks from the inherently unreliable nodes and allows control tasks to share between nodes of wireless networks. Our simulations demonstrate that R-WSAN provides the enhanced resilience to the network faults for sensing and actuation without significantly disrupting the control performance.


2012 ◽  
Vol 546-547 ◽  
pp. 972-976
Author(s):  
Zhen Feng ◽  
Jia Liu ◽  
Jing Jing Xiong

Aiming at the problem of the network delay, this paper presents a kind of application of generalized predictive control algorithm in networked control systems. The algorithm applys future control signal predicted by MPC (model predictive control) to compensating for the delay or interruption in forward channel, and the delay in feedback channel with a predictor at the same time. The paper describes the control characteristic and discusses the stability of network control system, and verificates the algorithm's feasible and effective characteristics in networked control systems through the simulation.


2010 ◽  
Vol 83 (5) ◽  
pp. 996-1008 ◽  
Author(s):  
Xu-Guang Li ◽  
Arben Çela ◽  
Silviu-Iulian Niculescu ◽  
Abdellatif Reama

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6866
Author(s):  
Weifan Lu ◽  
Xiuxia Yin ◽  
Yichuan Fu ◽  
Zhiwei Gao

This paper studies the problem of DoS attack defense based on static observer-based event-triggered predictive control in networked control systems (NCSs). First, under the conditions of limited network bandwidth resources and the incomplete observability of the state of the system, we introduce the event-triggered function to provide a discrete event-triggered transmission scheme for the observer. Then, we analyze denial-of-service (DoS) attacks that occur on the network transmission channel. Using the above-mentioned event-triggered scheme, a novel class of predictive control algorithms is designed on the control node to proactively save network bandwidth and compensate for DoS attacks, which ensures the stability of NCSs. Meanwhile, a closed-loop system with an observer-based event-triggered predictive control scheme for analysis is created. Through linear matrix inequality (LMI) and the Lyapunov function method, the design of the controller, observer and event-triggered matrices is established, and the stability of the scheme is analyzed. The results show that the proposed solution can effectively compensate DoS attacks and save network bandwidth resources by combining event-triggered mechanisms. Finally, a smart grid simulation example is employed to verify the feasibility and effectiveness of the scheme’s defense against DoS attacks.


Sign in / Sign up

Export Citation Format

Share Document