Large-Scale Model-Based Avionics Architecture Optimization Methods and Case Study

2019 ◽  
Vol 55 (6) ◽  
pp. 3424-3441
Author(s):  
Bjorn Annighofer ◽  
Ernst Kleemann
2019 ◽  
Author(s):  
Paul Stapor ◽  
Leonard Schmiester ◽  
Christoph Wierling ◽  
Bodo M.H. Lange ◽  
Daniel Weindl ◽  
...  

AbstractQuantitative dynamical models are widely used to study cellular signal processing. A critical step in modeling is the estimation of unknown model parameters from experimental data. As model sizes and datasets are steadily growing, established parameter optimization approaches for mechanistic models become computationally extremely challenging. However, mini-batch optimization methods, as employed in deep learning, have better scaling properties. In this work, we adapt, apply, and benchmark mini-batch optimization for ordinary differential equation (ODE) models thereby establishing a direct link between dynamic modeling and machine learning. On our main application example, a large-scale model of cancer signaling, we benchmark mini-batch optimization against established methods, achieving better optimization results and reducing computation by more than an order of magnitude. We expect that our work will serve as a first step towards mini-batch optimization tailored to ODE models and enable modeling of even larger and more complex systems than what is currently possible.


2019 ◽  
Vol 13 ◽  
pp. 117793221881845
Author(s):  
Christian Saad ◽  
Bernhard Bauer ◽  
Ulrich R Mansmann ◽  
Jian Li

AutoAnalyze is a highly customizable framework for the visualization and analysis of large-scale model graphs. Originally developed for use in the automotive domain, it also supports efficient computation within molecular networks represented by reaction equations. A static analysis approach is used for efficient treatment-condition-specific simulation. The chosen method relies on the computation of a global network data-flow resulting from the evaluation of individual genetic data. The approach facilitates complex analyses of biological components from a molecular network under specific therapeutic perturbations, as demonstrated in a case study. In addition to simulating the complex networks in a stable and reproducible way, kinetic constants can also be fine-tuned using a genetic algorithm and built-in statistical tools.


2016 ◽  
Vol 26 (1) ◽  
pp. 542-555 ◽  
Author(s):  
Robert Malone ◽  
Brittany Friedland ◽  
John Herrold ◽  
Daniel Fogarty

PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e29510 ◽  
Author(s):  
Torsten Hothorn ◽  
Roland Brandl ◽  
Jörg Müller

2007 ◽  
Vol 56 (6) ◽  
pp. 1-9 ◽  
Author(s):  
R.M. Bijlsma ◽  
P. Groenendijk ◽  
M.W. Blind ◽  
A.Y. Hoekstra

Uncertainty analysis for large-scale model studies is a challenging activity that requires a different approach to uncertainty analysis at a smaller scale. However, in river basin studies, the practice of uncertainty analysis at a large scale is mostly derived from practice at a small scale. The limitations and inherent subjectivity of some current practices and assumptions are identified, based on the results of a quantitative uncertainty analysis exploring the effects of input data and parameter uncertainty on surface water nutrient concentration. We show that: (i) although the results from small- scale sensitivity analysis are often applied at larger scales, this is not always valid; (ii) the current restriction of the uncertainty assessment to uncertainty types with a strong evidence base gives structurally conservative estimates; (iii) uncertainty due to bias is usually not assessed, but it may easily outweigh the effects of variability; (iv) the uncertainty bandwidth may increase for higher aggregation levels, although the opposite is the standard assumption.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document