Wideband and Dual-Band High-Gain Substrate Integrated Antenna Array for E-Band Multi-Gigahertz Capacity Wireless Communication Systems

2014 ◽  
Vol 62 (9) ◽  
pp. 4602-4611 ◽  
Author(s):  
Lei Wang ◽  
Yu Jian Cheng ◽  
Da Ma ◽  
Cheng Xiang Weng
2021 ◽  
Vol 10 (1) ◽  
pp. 232-240
Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Yully Erwanti Masrukin ◽  
Tole Sutikno ◽  
Hussein Alsariera

Due to the progression growth of multiservice wireless communication systems in a single device, multiband bandpass filter has attract a great attention to the end user. Therefore, multiband bandpass filter is a crucial component in the multiband transceivers systems which can support multiple services in one device. This paper presents a design of dual-band bandpass filter at 2.4 GHz and 3.5 GHz for WLAN and WiMAX applications. Firstly, the wideband bandpass filter is designed at a center frequency of 3 GHz based on quarter-wavelength short circuited stub. Three types of defected microstrip structure (DMS) are implemented to produce a wide notch band, which are T-inversed shape, C-shape, and U- Shape. Based on the performance comparisons, U-shaped DMS is selected to be integrated with the bandpass filter. The designed filter achieved two passbands centered at 2.51 GHz and 3.59 GHz with 3 dB bandwidth of 15.94 % and 15.86 %. The proposed design is very useful for wireless communication systems and its applications such as WLAN and WiMAX 


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 98786-98791 ◽  
Author(s):  
Jianchun Xu ◽  
Ke Bi ◽  
Xiaojun Zhai ◽  
Yanan Hao ◽  
Klaus D. Mcdonald-Maier

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fei-Peng Lai ◽  
Lu-Wu Chang ◽  
Yen-Sheng Chen

A compact substrate integrated waveguide (SIW) antenna array that operates at 28 GHz and 38 GHz is proposed for fifth generation (5G) applications. The proposed array consists of four SIW cavities fabricated on one single layer of substrate. Each cavity implements a rhombic slot and a triangular-split-ring slot, resonating on TE101 and TE102 modes at 28 GHz and 38 GHz, respectively. In comparison with dual-band SIW antennas in the literature, the proposed configuration depicts a miniature footprint (28.7 × 30.8 mm2) without stacking substrates. To excite the four cavities with equal power, a broadband power divider that supports the propagation of TE10 mode is designed. Accordingly, the impedance bandwidths are 26.6–28.3 GHz and 36.8–38.9 GHz. The measured realized peak gain over the lower and higher bands is 9.3–10.9 dBi and 8.7–12.1 dBi, respectively. The measured half-power beam widths (HPBWs) at 28 GHz and 38 GHz are 20.7° and 15.0°, respectively. Considering these characteristics, including dual bands, high gain, narrow beam widths, miniaturization, and single layer, the proposed antenna array is a suitable candidate for millimeter-wave 5G communication systems with the flexibility in switching operating frequency bands against channel quality variations.


2014 ◽  
Vol 7 (6) ◽  
pp. 721-726
Author(s):  
Abhishek Kandwal ◽  
Jai Verdhan Chauhan ◽  
Sunil Kumar Khah

Design analysis of multiband-coupled stacked sectoral antenna array with finite ground plane using high low dielectric constant substrates is proposed in this paper for modern communication systems and applied physics. Multiband planar antennas have been extensively developed due to demands for integration of wireless communication systems. In this paper, we present the design and development of a multiband microstrip antenna array with parasitic coupling and stacking using two different substrates. The stacked designed antenna resonates at three different frequencies: 3.8, 5.4, and 10 GHz; therefore, showing a multiband property with good radiation (far-field) characteristics. A significant comparison study is also presented considering different dielectric constant substrates. The proposed antenna is an attractive solution for different wireless communication systems such as mobile systems, satellite systems, etc.


2003 ◽  
Vol 36 (5) ◽  
pp. 381-385 ◽  
Author(s):  
Cuthbert M. Allen ◽  
Atef Z. Elsherbeni ◽  
Charles E. Smith ◽  
Chun-Wen P. Huang ◽  
Kai-Fong Lee

Author(s):  
Soukaina Sekkal ◽  
Laurent Canale ◽  
Mariam El Gharbi ◽  
Adel Asselman

In this work, a new flexible antenna integrated with OLED light sources is presented for WiMAX wireless communication systems. The proposed antenna was placed on a 100% polyester base with a thickness of 1.5 mm and achieved a high gain. We evaluated and tested its performance, including reflection coefficient, radiation pattern and gain. The flexible and simple patch antenna has been designed to operate at 3.5 GHz for WiMAX wireless communication systems with a gain value of 5.38 dB. This article proves the applicability of the proposed material for the integration of flexible antennas in OLEDs while maintaining gain performance similar to conventional flat antennas.


Sign in / Sign up

Export Citation Format

Share Document