Realization of High-Gain Low-Sidelobe Wide-Sector Beam Using Inductive Diaphragms Loaded Slotted Ridge Waveguide Antenna Array for Air Detection Applications

Author(s):  
Jianzhong Chen ◽  
Tian Hu ◽  
Yu-Tong Zhao ◽  
Liang Li ◽  
Min Bao ◽  
...  
Author(s):  
Luong Xuan Truong ◽  
Truong Vu Bang Giang ◽  
Tran Minh Tuan

This paper proposes a new design of low sidelobe level (SLL) and high gain linear printed Vivaldi antenna array. The array composes of two parts, which are a linear Vivaldi antenna array and a back reflector. The array consists of 10 single Vivaldi antennas and a series-fed network, those are based on Roger RO4003C substrate (ε = 3.55) with the dimension of 140 x 450 x 1.524 mm3. A new Bat algorithm with the amplitude-only control technique has been applied to optimize the output coefficients of the series-fed network for gaining a low SLL. The simulation results indicate that the proposed antenna provides a low SLL of -29.2 dB in E-plane with a high gain of 16.5 dBi at the frequency of 3500 MHz. A prototype of the proposed antenna array has been fabricated. The measured data has a good agreement with the simulated data.


Author(s):  
Le Minh Thuy

In this paper, a novel antenna array at 5GHz is presented with a low sidelobe level and wide impedance bandwidth for indoor positioning applications . The antenna array has the size of 450 ×57×0.8 mm3 with the high gain of 14.5dBi and the low SLL of -18 dB at 5GHz. The series feed using Unequal Split T-Junction is proposed with the Chebyshev-amplitude distribution to improve SLL. Besides the 1800 phase and amplitude distribution, by deploying driven elements above each single antenna element, the radiation pattern and the gain of the antenna aray are significantly improved.


Sign in / Sign up

Export Citation Format

Share Document