Design and Implementation and On-Chip High-Speed Test of SFQ Half-Precision Floating-Point Adders

2009 ◽  
Vol 19 (3) ◽  
pp. 634-639 ◽  
Author(s):  
Heejoung Park ◽  
Y. Yamanashi ◽  
K. Taketomi ◽  
N. Yoshikawa ◽  
M. Tanaka ◽  
...  
2009 ◽  
Vol 19 (3) ◽  
pp. 657-660 ◽  
Author(s):  
H. Hara ◽  
K. Obata ◽  
Heejoung Park ◽  
Y. Yamanashi ◽  
K. Taketomi ◽  
...  
Keyword(s):  

2019 ◽  
Vol 8 (2S3) ◽  
pp. 1064-1067

Multiplication of floating point(FP) numbers is greatly significant in many DSP applications. The performance of the DSP’s is substantially decided by the speed of the multipliers used. This paper proposes the design and implementation of IEEE 754 standard single precision FP multiplier using Verilog, synthesized and simulated in Xilinx ISE10.1. Urdhva Triyagbhyam Sutra of Vedic mathematics is used for the unsigned mantissa calculation. The design implements floating point multiplication with sign bit and exponent calculations. The proposed design is achieved high speed with minimum delay of 3.997ns.Multiplication of floating point(FP) numbers is greatly significant in many DSP applications. The performance of the DSP’s is substantially decided by the speed of the multipliers used. This paper proposes the design and implementation of IEEE 754 standard single precision FP multiplier using Verilog, synthesized and simulated in Xilinx ISE10.1. Urdhva Triyagbhyam Sutra of Vedic mathematics is used for the unsigned mantissa calculation. The design implements floating point multiplication with sign bit and exponent calculations. The proposed design is achieved high speed with minimum delay of 3.997ns.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3357-3365 ◽  
Author(s):  
Shaohua Dong ◽  
Qing Zhang ◽  
Guangtao Cao ◽  
Jincheng Ni ◽  
Ting Shi ◽  
...  

AbstractPlasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.


Sign in / Sign up

Export Citation Format

Share Document