Development of a Novel Robust Control Method for Formation of Heterogeneous Multiple Mobile Robots With Autonomous Docking Capability

2020 ◽  
Vol 17 (4) ◽  
pp. 1759-1776
Author(s):  
Negin Lashkari ◽  
Mohammad Biglarbegian ◽  
Simon X. Yang
2014 ◽  
Vol 15 (2) ◽  
Author(s):  
Caio Igor Gonçalves Chinelato ◽  
L.S. Martins-Filho

<span style="font-family: T3Font_6; font-size: xx-small;"><span style="font-family: T3Font_6; font-size: xx-small;"><em> <span style="font-size: small;"> </span></em><p class="MsoNormal" style="margin: 0cm 0cm 0pt; text-align: justify;"><em><em style="mso-bidi-font-style: normal;"><span style="font-size: 11pt; mso-bidi-font-size: 10.0pt; mso-ansi-language: EN-US;" lang="EN-US">Formation control of multiple mobile robots is relatively a new area of robotics and increase the control performance and advantages of multiple mobile robots systems. <a name="OLE_LINK72">In this work we present a study concerning the modeling and formation control of a robotic system composed by two mobile robots, where one robot is the leader and the other is follower</a></span></em><em style="mso-bidi-font-style: normal;"><span style="font-size: 11pt; mso-bidi-font-size: 10.0pt; mso-ansi-language: EN-US;" lang="EN-US">. The system is a nonlinear dynamical system and cannot be controlled by traditional linear control techniques. The control strategy proposed is the SDRE (State-Dependent Riccati Equation) method. Simulations results with the software Matlab show the efficiency of the control method.</span></em></em></p><span style="font-size: small;"> </span></span></span>


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986038
Author(s):  
Huang Yiqing ◽  
Wang Hui ◽  
Wei Lisheng ◽  
Gao Wengen ◽  
Ge Yuan

This article presented a cooperative mapping technique using a novel edge gradient algorithm for multiple mobile robots. The proposed edge gradient algorithm can be divided into four behaviors such as adjusting the movement direction, evaluating the safety of motion behavior, following behavior, and obstacle information exchange, which can effectively prevent multiple mobile robots falling into concave obstacle areas. Meanwhile, a visual field factor is constructed based on biological principles so that the mobile robots can have a larger field of view when moving away from obstacles. Also, the visual field factor will be narrowed due to the obstruction of the obstacle when approaching an obstacle and the obtained map-building data are more accurate. Finally, three sets of simulation and experimental results demonstrate the performance superiority of the presented algorithm.


Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


Sign in / Sign up

Export Citation Format

Share Document