Leader-follower formation control for multiple mobile robots by a designed sliding mode controller based on kinematic control method

Author(s):  
Yudong Zhao ◽  
Dongju Park ◽  
Jeonghwan Moon ◽  
Jangmyung Lee
2014 ◽  
Vol 15 (2) ◽  
Author(s):  
Caio Igor Gonçalves Chinelato ◽  
L.S. Martins-Filho

<span style="font-family: T3Font_6; font-size: xx-small;"><span style="font-family: T3Font_6; font-size: xx-small;"><em> <span style="font-size: small;"> </span></em><p class="MsoNormal" style="margin: 0cm 0cm 0pt; text-align: justify;"><em><em style="mso-bidi-font-style: normal;"><span style="font-size: 11pt; mso-bidi-font-size: 10.0pt; mso-ansi-language: EN-US;" lang="EN-US">Formation control of multiple mobile robots is relatively a new area of robotics and increase the control performance and advantages of multiple mobile robots systems. <a name="OLE_LINK72">In this work we present a study concerning the modeling and formation control of a robotic system composed by two mobile robots, where one robot is the leader and the other is follower</a></span></em><em style="mso-bidi-font-style: normal;"><span style="font-size: 11pt; mso-bidi-font-size: 10.0pt; mso-ansi-language: EN-US;" lang="EN-US">. The system is a nonlinear dynamical system and cannot be controlled by traditional linear control techniques. The control strategy proposed is the SDRE (State-Dependent Riccati Equation) method. Simulations results with the software Matlab show the efficiency of the control method.</span></em></em></p><span style="font-size: small;"> </span></span></span>


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110514
Author(s):  
Lei Zhao ◽  
Changqing Yuan ◽  
Qingbo Hao ◽  
Jingjiu He

This paper aims to investigate the feasibility of using the combination of solar radiation pressure and Coulomb force as a propellantless control method for spacecraft formation around the planetary displaced orbit. Firstly, the dynamical equation of spacecraft formation is derived and linearized. Based on the linearized dynamic model, an integral sliding mode controller (ISMC) is designed. Aimed to stabilize the spacecraft formation, the control method is proposed to adjust the product of the charge and the attitude angles of two spacecrafts. Finally, numerical simulations are conducted and the results show that the controller can make the formation achieve the desired configuration with favorable control performances.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881527 ◽  
Author(s):  
Xudong Liu ◽  
Ke Li

A novel speed control method based on sliding mode control and disturbance observer is studied for permanent magnet synchronous motor drives. Different from the conventional speed and current cascade control structure in the field-oriented vector control, the new controller adopts the single-loop control structure, in which the speed and quadrate axes current controllers are combined together. First, a multiple-surface sliding mode controller is designed for the speed control system of permanent magnet synchronous motor. Although the sliding mode controller has the strong robustness for the matched disturbance in the system, it still cannot deal with mismatched disturbance effectively, such as external load disturbance and some parameter variations. Thus, the disturbance observer is introduced to estimate the disturbance in the motor, which is designed by combining the proposed sliding mode controller. Finally, the effectiveness is tested under various conditions by both simulation and experiment. The results show that the designed controller has the fast transient response and robustness under different operating conditions.


Sign in / Sign up

Export Citation Format

Share Document