FE Simulation Model for Warpage Evaluation of Glass Interposer Substrate Packages

Author(s):  
Mengkai Shih ◽  
Karen Chen ◽  
Teck Lee ◽  
David Tarng ◽  
C. P. Hung
2009 ◽  
Vol 131 (4) ◽  
Author(s):  
A. Herrera ◽  
J. J. Panisello ◽  
E. Ibarz ◽  
J. Cegoñino ◽  
J. A. Puértolas ◽  
...  

The implantation of a cemented or cementless femoral stem changes the physiological load transfer on the femur producing an effect on the bone called adaptative remodeling. The patterns of this remodeling are attributed to mechanical and biological factors, and those changes in bone mineral density have been determined in long-term densitometry studies. This technique has proved to be a useful tool able to quantify small changes in bone density in different femoral areas, and it is considered to be ideal for long-term studies. On the other hand, the finite element (FE) simulation allows the study of the biomechanical changes produced in the femur after the implantation of a femoral stem. The aim of this study was to contrast the findings obtained from a 5 year follow-up densitometry study that used a newly designed femoral stem (73 patients were included in this study), with the results obtained using a finite element simulation that reproduces the pattern of load transfer that this stem causes on the femur. In this study we have obtained a good comparison between the results of stress of FE simulation and the bone mass values of the densitometry study establishing a ratio between the increases in stress (%) versus the increases in bone density (%). Hence, the changes in bone density in the long term, compared with the healthy femur, are due to different load transfers after stem implantation. It has been checked that in the Gruen zone 7 at 5 years, the most important reduction in stress (7.85%) is produced, which coincides with the highest loss of bone mass (23.89%). Furthermore, the simulation model can be used with different stems with several load conditions and at different time periods to carry out the study of biomechanical behavior in the interaction between the stem and the femur, explaining the evolution of bone density in accordance to Wolff’s law, which validates the simulation model.


2021 ◽  
Author(s):  
Jing Zhou ◽  
Xiaoming Yang ◽  
Baoyu Wang ◽  
Wenchao Xiao

Abstract In this paper, the springback behavior of high strength aluminum alloy 7075 is studied by experiments and finite element (FE) simulation. Firstly, an analytical model is established to predict the springback angles and analyze the springback trend. The springback experimental tests are conducted by using the V-shaped stamping dies. The influence of deformation temperature, punch radius and blank holder force on the springback angles are studied. Finally, An FE simulation model is performed to investigate the deformation characteristics and springback process of the aluminum alloy sheet. The results show that the change of springback angles is direct proportional to the punch radius. The springback angles increase with the decreasing deformation temperature and the increasing blank holder force. The stress relaxation that occurs during the die holding stage is the primary reason of reducing the springback compared with cold stamping. Low blank holder force will cause side wall curl, which results in the deviation of forming size. The FE simulation model considering stress relaxation is capable of precisely predicting the change of springback angles, and the simulation results exhibit good consistency with the experimental results.


Author(s):  
Guijian Xiao ◽  
Kangkang Song ◽  
Huawei Zhou ◽  
Yi He ◽  
Wentao Dai

The titanium alloy blade is a key part of an aero-engine, but its high surface efficiency and precision machining present technical problems. Belt grinding can effectively prolong the fatigue life of the blade and enhance the service performance of the aero-engine. However, the residual stress of the workpiece after belt grinding directly affects its service performance and life. The traditional single particle abrasive model simulation is limited in exploring the influence of grinding process parameters on surface residual stress. In this study, an ABAQUS simulation model of multi-particle belt grinding is established for titanium alloy material, a finite element (FE) simulation is conducted with different technological parameters, and the results are analysed. The critical belt grinding experiment is conducted on thin-walled titanium alloy parts, and the distribution characteristics of surface residual stress after grinding are studied to understand the influence of grinding parameters on the formation of surface residual stress. Comparing the results of the FE simulation and the grinding experiment, the common law of stress change and the prediction model are obtained. The results show that the multi-particle belt grinding simulation is consistent with the belt grinding experiment in terms of the influence of grinding parameters on residual stress. The simulation can serve as a guide in actual belt grinding to some extent. Directions for improving the multi-particle abrasive simulation model are discussed.


1998 ◽  
Vol 94 (3) ◽  
pp. 417-433 ◽  
Author(s):  
MARTIN VAN DER HOEF ◽  
PAUL MADDEN

Sign in / Sign up

Export Citation Format

Share Document