scholarly journals An Accelerated LIF Neuronal Network Array for a Large-Scale Mixed-Signal Neuromorphic Architecture

2018 ◽  
Vol 65 (12) ◽  
pp. 4299-4312 ◽  
Author(s):  
Syed Ahmed Aamir ◽  
Yannik Stradmann ◽  
Paul Muller ◽  
Christian Pehle ◽  
Andreas Hartel ◽  
...  
2018 ◽  
Vol 8 (4) ◽  
pp. 34 ◽  
Author(s):  
Vishal Saxena ◽  
Xinyu Wu ◽  
Ira Srivastava ◽  
Kehan Zhu

The ongoing revolution in Deep Learning is redefining the nature of computing that is driven by the increasing amount of pattern classification and cognitive tasks. Specialized digital hardware for deep learning still holds its predominance due to the flexibility offered by the software implementation and maturity of algorithms. However, it is being increasingly desired that cognitive computing occurs at the edge, i.e., on hand-held devices that are energy constrained, which is energy prohibitive when employing digital von Neumann architectures. Recent explorations in digital neuromorphic hardware have shown promise, but offer low neurosynaptic density needed for scaling to applications such as intelligent cognitive assistants (ICA). Large-scale integration of nanoscale emerging memory devices with Complementary Metal Oxide Semiconductor (CMOS) mixed-signal integrated circuits can herald a new generation of Neuromorphic computers that will transcend the von Neumann bottleneck for cognitive computing tasks. Such hybrid Neuromorphic System-on-a-chip (NeuSoC) architectures promise machine learning capability at chip-scale form factor, and several orders of magnitude improvement in energy efficiency. Practical demonstration of such architectures has been limited as performance of emerging memory devices falls short of the expected behavior from the idealized memristor-based analog synapses, or weights, and novel machine learning algorithms are needed to take advantage of the device behavior. In this article, we review the challenges involved and present a pathway to realize large-scale mixed-signal NeuSoCs, from device arrays and circuits to spike-based deep learning algorithms with ‘brain-like’ energy-efficiency.


Neurology ◽  
2012 ◽  
Vol 78 (Meeting Abstracts 1) ◽  
pp. P03.071-P03.071
Author(s):  
P. Valsasina ◽  
M. Rocca ◽  
V. Martinelli ◽  
R. Messina ◽  
P. Misci ◽  
...  

2009 ◽  
Vol 65 ◽  
pp. S133
Author(s):  
Abigail Morrison ◽  
Tobias C. Potjans ◽  
Susanne Kunkel ◽  
Markus Diesmann

2022 ◽  
Vol 27 (1) ◽  
pp. 1-24
Author(s):  
Bo Li ◽  
Guoyong Shi

Since the memristor emerged as a programmable analog storage device, it has stimulated research on the design of analog/mixed-signal circuits with the memristor as the enabler of in-memory computation. Due to the difficulty in evaluating the circuit-level nonidealities of both memristors and CMOS devices, SPICE-accuracy simulation tools are necessary for perfecting the art of neuromorphic analog/mixed-signal circuit design. This article is dedicated to a native SPICE implementation of the memristor device models published in the open literature and develops case studies of applying such a circuit simulation with MOSFET models to study how device-level imperfections can make adversarial effects on the analog circuits that implement neuromorphic analog signal processing. Methods on memristor stamping in the framework of modified nodal analysis formulation are presented, and implementation results are reported. Furthermore, functional simulations on neuromorphic signal processing circuits including memristors and CMOS devices are carried out to validate the effectiveness of the native SPICE implementation of memristor models from the perspectives of simulation accuracy, efficiency, and convergence for large-scale simulation tasks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Corentin Delacour ◽  
Aida Todri-Sanial

Oscillatory Neural Network (ONN) is an emerging neuromorphic architecture with oscillators representing neurons and information encoded in oscillator's phase relations. In an ONN, oscillators are coupled with electrical elements to define the network's weights and achieve massive parallel computation. As the weights preserve the network functionality, mapping weights to coupling elements plays a crucial role in ONN performance. In this work, we investigate relaxation oscillators based on VO2 material, and we propose a methodology to map Hebbian coefficients to ONN coupling resistances, allowing a large-scale ONN design. We develop an analytical framework to map weight coefficients into coupling resistor values to analyze ONN architecture performance. We report on an ONN with 60 fully-connected oscillators that perform pattern recognition as a Hopfield Neural Network.


2009 ◽  
Vol 6 (1) ◽  
pp. 38-41
Author(s):  
Lewis Dove

Mixed-signal Application Specific Integrated Circuits (ASICs) have traditionally been used in test and measurement applications for a variety of functions such as data converters, pin electronics circuitry, drivers, and receivers. Over the past several years, the complexity, power density, and bandwidth of these chips has increased dramatically. This has necessitated dramatic changes in the way these chips have been packaged. As the chips have become true VLSI (Very Large Scale Integration) ICs, the number of I/Os have become too large to interconnect with wire bonds. Thus, it has become necessary to utilize flip chip interconnects. Also, the bandwidth of the high-speed signal paths and clocks has increased into the multi Gbit or GHz ranges. This requires the use of packages with good high-frequency performance which are designed using microwave circuit techniques to optimize signal integrity and to minimize signal crosstalk and noise.


2009 ◽  
Vol 17 (10) ◽  
pp. 1405-1418 ◽  
Author(s):  
E. Salman ◽  
R. Jakushokas ◽  
E.G. Friedman ◽  
R.M. Secareanu ◽  
O.L. Hartin

Sign in / Sign up

Export Citation Format

Share Document