Design of Line-of-Sight Guidance Law and a Constrained Optimal Controller for an Autonomous Underwater Vehicle

2021 ◽  
Vol 68 (1) ◽  
pp. 416-420
Author(s):  
Raja Rout ◽  
Bidyadhar Subudhi
2011 ◽  
Vol 219-220 ◽  
pp. 362-365
Author(s):  
Hao Ding ◽  
Kui Ping Liu ◽  
Wen Li You

The key for Autonomous Underwater Vehicle (AUV) to implement target pursuit is to design high performance guidance law. The globose reference frame is adopted, and equations for 3-D relative motion between AUV and the target are built. Then the H∞ theory is used, and a new AUV nonlinear H∞ guidance law is obtained by solving Hamilton-Jacobi inequation. Simulation is taken on to verify the performance of H∞ guidance law. And the results show that the H∞ guidance law can help AUV overtake the target in less time, and the azimuth and pitching angle of the target line of sight are always staying at the initial numerical values. Furthermore, the normal load decreases to zero gradually. So the guidance law is effective for AUV to pursuit target.


2000 ◽  
Vol 53 (3) ◽  
pp. 511-525 ◽  
Author(s):  
R. Sutton ◽  
R. S. Burns ◽  
P. J. Craven

This paper considers the development of three autopilots for controlling the yaw responses of an autonomous underwater vehicle model. The autopilot designs are based on the adaptive network-based fuzzy inference system (ANFIS), a simulated, annealing-tuned control algorithm and a traditional proportional-derivative controller. In addition, each autopilot is integrated with a line-of-sight (LOS) guidance system to test its effectiveness in steering round a series of waypoints with and without the presence of sea current disturbance. Simulation results are presented that show the overall superiority of the ANFIS approach.


2019 ◽  
Vol 93 ◽  
pp. 101943 ◽  
Author(s):  
Fengxu Liu ◽  
Yue Shen ◽  
Bo He ◽  
Dianrui Wang ◽  
Junhe Wan ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 795 ◽  
Author(s):  
Xuliang Yao ◽  
Xiaowei Wang ◽  
Feng Wang ◽  
Le Zhang

This paper studies three-dimensional (3D) straight line path following and obstacle avoidance control for an underactuated autonomous underwater vehicle (AUV) without lateral and vertical driving forces. Firstly, the expected angular velocities are designed by using two different methods in the kinematic controller. The first one is a traditional method based on Line-of-sight (LOS) guidance law, and the second one is an improved method based on model predictive control (MPC). At the same time, a penalty item is designed by using the obstacle information detected by onboard sensors, which can realize the real-time obstacle avoidance of the unknown obstacle. Then, in order to overcome the uncertainty of the dynamics model and the saturation of actual control input, the dynamic controller is designed by using sliding mode control (SMC) technology. Finally, in the simulation experiment, the performance of the improved control method is verified by comparison with two traditional control methods based on LOS guidance law. Since the constraint of an AUV’s angular velocities are considered in MPC, simulation results show that the improved control method uses MPC, and SMC not only improves the tracking quality of the AUV when switching paths near the waypoints and realizes real-time obstacle avoidance but also effectively reduces the mean square error (MSE) and saturation rate of the rudder angle. Therefore, this control method is more conducive to the system stability and saves energy.


2020 ◽  
Vol 8 (9) ◽  
pp. 683
Author(s):  
Xiaoming Wang ◽  
Gaosheng Wu

The portable modular AUV (Autonomous Underwater Vehicle), named ZFAUV, has the ability to move laterally. Its turning radius becomes smaller as the forward speed decreases. Based on this special maneuverability, a modified LOS (line of sight) path following strategy, integrating basic LOS and lateral movement, is proposed. The main idea of this strategy is to improve the path following performance through cross-track error and heading error. That is to say, the ZFAUV continues to move toward the current waypoint during a survey task. If ZFAUV deviates from the desired path due to disturbances from the wind, waves, current, or other uncertainties, it gradually returns to the desired path under lateral maneuverability. At the same time, in order to reduce overshoot after reaching the current waypoint, an arc transiting strategy and decelerating strategy (if necessary) are adopted. Through this strategy, the path following performance is greatly improved. Based on mathematical modeling, this strategy is simulated with a square path and a triangular path. The same paths are selected in lake experiments. The experimental results are in agreement with the simulation results, which demonstrate the validity of this strategy.


Sign in / Sign up

Export Citation Format

Share Document