DC-Bus Dual-Level Control Strategy for PV Power System With Dual-Mode Operation

2019 ◽  
Vol 34 (1) ◽  
pp. 267-276 ◽  
Author(s):  
Terng-Wei Tsai ◽  
Cheng-Jhen Yang ◽  
Yi-Chan Li ◽  
Yaow-Ming Chen ◽  
Yung-Ruei Chang
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2781
Author(s):  
Yue Zhou ◽  
Hussein Obeid ◽  
Salah Laghrouche ◽  
Mickael Hilairet ◽  
Abdesslem Djerdir

In order to improve the durability and economy of a hybrid power system composed of a battery and supercapacitors, a control strategy that can reduce fluctuations of the battery current is regarded as a significant tool to deal with this issue. This paper puts forwards a disturbance rejection control strategy for a hybrid power system taking into account the degradation of the battery. First, the degradation estimation of the battery is done by the model-driven method based on the degradation model and Cubature Kalman Filter (CKF). Considering the transient and sinusoidal disturbance from the load in such a hybrid system, it is indispensable to smooth the behavior of the battery current in order to ensure the lifespan of the battery. Moreover, the constraints for the hybrid system should be considered for safety purposes. In order to deal with these demands, a cascaded voltage control loop based on a super twisting controller and proportional integral controller with an anti-windup scheme is designed for regulating the DC bus voltage in an inner voltage loop and supercapacitors’ voltage in an outer voltage loop, respectively. The specific feature of the proposed control method is that it operates like a low-pass filter so as to reduce the oscillations on the DC bus.


2020 ◽  
Vol 185 ◽  
pp. 01062
Author(s):  
Xiangyang Yan ◽  
Ningkang Zheng ◽  
Yilong Kang ◽  
Huanruo Qi ◽  
Kai Li ◽  
...  

Nowadays, distributed generation technology is of great help to the efficient utilization of new energy. If the distributed power supply is connected to the DC micro-grid, it will be more secure and reliable. Therefore, it is necessary to control the voltage stability of the DC bus and ensure the balance of the source charge power of system to ensure the power supply quality and safety of the DC micro-grid. There are two operation modes of DC micro-grid: connected operation and isolated operation, and isolated operation control is the foundation and key of system-level control of DC micro-grid. To solve the problem of bus voltage fluctuation in isolated dc micro-grid, this study proposes a voltage hierarchical-droop control strategy for DC micro-grid, which can effectively improve the stability of the DC bus voltage. Last, this study builds the simulation model of DC micro-grid in the MATLAB/Simulink platform to verify the validity and feasibility of the proposed control strategy.


2014 ◽  
Vol 9 (4) ◽  
pp. 792 ◽  
Author(s):  
Anna Pinnarelli ◽  
Giuseppe Barone ◽  
Giovanni Brusco ◽  
Alessandro Burgio ◽  
Daniele Menniti ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1889 ◽  
Author(s):  
Nicu Bizon ◽  
Valentin Alexandru Stan ◽  
Angel Ciprian Cormos

In this paper, a systematic analysis of seven control topologies is performed, based on three possible control variables of the power generated by the Fuel Cell (FC) system: the reference input of the controller for the FC boost converter, and the two reference inputs used by the air regulator and the fuel regulator. The FC system will generate power based on the Required-Power-Following (RPF) control mode in order to ensure the load demand, operating as the main energy source in an FC hybrid power system. The FC system will operate as a backup energy source in an FC renewable Hybrid Power System (by ensuring the lack of power on the DC bus, which is given by the load power minus the renewable power). Thus, power requested from the batteries’ stack will be almost zero during operation of the FC hybrid power system based on RPF-control mode. If the FC hybrid power system operates with a variable load demand, then the lack or excess of power on the DC bus will be dynamically ensured by the hybrid battery/ultracapacitor energy storage system for a safe transition of the FC system under the RPF-control mode. The RPF-control mode will ensure a fair comparison of the seven control topologies based on the same optimization function to improve the fuel savings. The main objective of this paper is to compare the fuel economy obtained by using each strategy under different load cycles in order to identify which is the best strategy operating across entire loading or the best switching strategy using two strategies: one strategy for high load and the other on the rest of the load range. Based on the preliminary results, the fuel consumption using these best strategies can be reduced by more than 15%, compared to commercial strategies.


Sign in / Sign up

Export Citation Format

Share Document