Design and Optimization of 1.2-kV SiC Planar Inversion MOSFET Using Split Dummy Gate Concept for High-Frequency Applications

2019 ◽  
Vol 66 (12) ◽  
pp. 5266-5271 ◽  
Author(s):  
Pavan Vudumula ◽  
Siva Kotamraju
2017 ◽  
Vol 24 (19) ◽  
pp. 4620-4629 ◽  
Author(s):  
Paolo Neri

In the present paper, the design and optimization of a high frequency excitation source is presented. The device was developed for a harmonic response analysis test bench, aimed at dynamic characterization and resonance prediction of mechanical structures. A wide frequency range must be covered, depending on the analyzed structure: the range 1–10 kHz was considered in the present work. The device was designed for a test bench aimed at investigating the vibrational response of centrifugal compressor bladed wheels. A really compact solution was needed since the final test bench provides one exciter for each blade (up to 20 devices on the circumference hoop). Both contact and contactless solutions were considered, but only the contact solution was found to fulfill all the specifications. Finally, different stinger solutions were proposed and compared in the paper. The investigated solutions were: a beam stinger (diameter 1 mm); a wire stinger (diameter 0.2 mm); and a ball stinger (diameter 3 mm) with two different support solutions. Experimental tests performed on a device prototype allowed to verify the specifications fulfillment and to choose the best stinger solution for the application.


Author(s):  
Boli Peng ◽  
Manojkumar Annamalai ◽  
Sven Mothes ◽  
Michael Schröter

AbstractCarbon nanotube (CNT) field-effect transistors (FETs) have recently reached high-frequency (HF) performance similar to that of silicon RF-CMOS at the same gate length despite a tube density and current per tube that are far from the physical limits and suboptimal device architecture. This work reports on an investigation of the optimal device design for practical HF applications in terms of cut-off frequencies, power gain, and linearity. Different fundamental designs in the gate contact arrangement are considered based on a 3D device simulation of both CNTs and contacts. First, unit cells with a single CNT and minimal contact sizes are compared. The resulting simulation data are then extended toward a structure with two gate fingers and realistic contact sizes. Corresponding parasitic capacitances, as well as series and contact resistances, have been included for obtaining realistic characteristics and figures of merit that can be used for comparison with corresponding silicon RF MOSFETs. Finally, a sensitivity analysis of the device architecture with the highest performance is performed in order to find the optimal device design space.


2020 ◽  
Vol 12 (17) ◽  
pp. 7034
Author(s):  
Yaqiong Lv ◽  
Shangjia Xiang ◽  
Tianyi Zhu ◽  
Shuzhu Zhang

The design of steel logistics parks acts as fundamental infrastructure supporting the operations of storage, allocation, and distribution of steel products in the steel logistics industry, which actually lags behind the development of other logistics industries, such as e-commerce logistics, due to its large lot bulk storage, low turnover rate, and costly transportation and operations. This research proposes a data-driven approach for a specific steel logistics park, aiming to improve its operational efficiency in terms of product layout and allocation in multiple yards. The entry and delivery order data are analyzed comprehensively so as to determine the products with high operational frequency and the corresponding relevancy among them. Experimental results show that, among the 69 steel specifications, 14 high-frequency products are identified, and the correlation among the 14 identified high-frequency products possesses evident distribution characteristics concerning their brands and specifications. The identified frequency and correlation among various products can not only facilitate the product layout and allocation in steel logistics parks, but also advance the vehicle scheduling efficiency for product pick-up and delivery. Moreover, the research methodology and framework can provide managerial insights for other industries with mass data processing requirements.


2020 ◽  
Vol 126 (11) ◽  
Author(s):  
Krishan Kumar ◽  
Ashish Raman ◽  
Balwinder Raj ◽  
Sarabdeep Singh ◽  
Naveen Kumar

Sign in / Sign up

Export Citation Format

Share Document