Complex Dielectric Permittivity Measurements Using a Rational Functional Method with Arbitrary Open-Ended Coaxial Probes

Author(s):  
Ismail Dilman ◽  
Mehmet Nuri Akinci ◽  
Mehmet Cayoren
2016 ◽  
Author(s):  
Megan O'Sadnick ◽  
Malcolm Ingham ◽  
Hajo Eicken ◽  
Erin Pettit

Abstract. The seasonal evolution of sea-ice microstructure controls key ice properties, including those governing ocean-atmosphere heat and gas exchange, remote-sensing signatures and the role of the ice cover as a habitat. Non-destructive in situ monitoring of sea-ice microstructure is of value for sea-ice research and operations, but remains elusive to date. We examine the potential for the electric properties of sea ice, which is highly sensitive to the brine distribution within the ice, to serve as a proxy for microstructure and, hence, other ice transport properties. Throughout spring of 2013 and 2014, we measured complex dielectric permittivity in the range of 10 Hz to 95 kHz in landfast ice off the coast of Barrow, Alaska. Temperature and salinity measurements and ice samples provide data to characterize ice microstructure in relation to these permittivity measurements. The results reveal a significant correlation between complex dielectric permittivity, brine volume fraction, and microstructural characteristics including pore volume and connectivity, derived from x-ray microtomography of core samples. The influence of temperature and salinity variations, as well as the relationships between ice properties, microstructural characteristics, and dielectric behavior emerge from multivariate analysis of the combined data set. Our findings suggest some promise for low-frequency permittivity measurements to track seasonal evolution of a combination of mean pore volume, fractional connectivity, and pore surface area-to-volume ratio, which in turn may serve as proxies for key sea-ice transport properties.


2016 ◽  
Vol 10 (6) ◽  
pp. 2923-2940 ◽  
Author(s):  
Megan O'Sadnick ◽  
Malcolm Ingham ◽  
Hajo Eicken ◽  
Erin Pettit

Abstract. The seasonal evolution of sea-ice microstructure controls key ice properties, including those governing ocean–atmosphere heat and gas exchange, remote-sensing signatures, and the role of the ice cover as a habitat. Non-destructive in situ monitoring of sea-ice microstructure is of value for sea-ice research and operations but remains elusive to date. We examine the potential for the electric properties of sea ice, which is highly sensitive to the brine distribution within the ice, to serve as a proxy for microstructure and, hence, other ice transport properties. Throughout spring of 2013 and 2014, we measured complex dielectric permittivity in the range of 10 to 95 kHz in landfast ice off the coast of Barrow (Utqiaġvik), Alaska. Temperature and salinity measurements and ice samples provide data to characterize ice microstructure in relation to these permittivity measurements. The results reveal a significant correlation between complex dielectric permittivity, brine volume fraction, and microstructural characteristics including pore volume and connectivity, derived from X-ray microtomography of core samples. The influence of temperature and salinity variations as well as the relationships between ice properties, microstructural characteristics, and dielectric behavior emerge from multivariate analysis of the combined data set. Our findings suggest some promise for low-frequency permittivity measurements to track seasonal evolution of a combination of mean pore volume, fractional connectivity, and pore surface area-to-volume ratio, which in turn may serve as proxies for key sea-ice transport properties.


Geophysics ◽  
2021 ◽  
pp. 1-70
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

Interpretation of complex dielectric permittivity measurements is challenging in clay-rich rocks, such as shaly sands and organic-rich mudrocks, due to complex rock fabric and mineralogical composition, which are overlooked by conventional interpretation models. For instance, the impact of fabric features (e.g., laminations, structural/dispersed shale) and diverse constitution (e.g., clay, kerogen, pyrite, brine) to the broadband complex permittivity is not well understood. Therefore, the main objective of this work is to develop a framework capable of reliably quantifying the impact of different minerals and their corresponding spatial distribution on the multi-frequency complex dielectric permittivity measurements in clay-rich rocks.To achieve the aforementioned objective, we introduce a numerical algorithm to compute the dielectric dispersion in 3D pore-scale images of clay-rich rocks. We numerically solve the quasi-electrostatic approximation to Maxwell's equations in the frequency domain through the finite volume method. The clay particles are often sub-resolution in most imaging methods. Therefore, we introduce a workflow to calculate the effective admittance of the clay network. Furthermore, we derive a new equation to incorporate the induced polarization effect into the effective admittance of pyrite particles. Finally, we perform a sensitivity analysis of the complex dielectric permittivity of clay-rich rocks in the frequency range from 100 Hz to 1 GHz to the volumetric concentration and spatial distribution of clays, cation exchange capacity (CEC), volumetric concentration of pyrite, and the orientation of the electric field. Results showed that clays can enhance or diminish electrical conductivity values at different frequencies depending on their intrinsic properties and spatial distribution. Laminations, for instance, significantly enhance dielectric permittivity in the sub-MHz frequency range, but their effect is imperceptible at 1 GHz. Furthermore, the impact of the variation of CEC on permittivity is approximately proportional at 100Hz but negligible at 1 GHz.


Sign in / Sign up

Export Citation Format

Share Document