Development of an Empirical Model for Predicting the Cation Exchange Capacity of Shaly Sandstones Using Complex Dielectric Permittivity Measurements

Author(s):  
Ali A. Garrouch
2018 ◽  
Vol 158 ◽  
pp. 195-203 ◽  
Author(s):  
Monique Lopes da Silva ◽  
Jorge Leonardo Martins ◽  
Mario Martins Ramos ◽  
Rodrigo Bijani

Geophysics ◽  
2021 ◽  
pp. 1-70
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

Interpretation of complex dielectric permittivity measurements is challenging in clay-rich rocks, such as shaly sands and organic-rich mudrocks, due to complex rock fabric and mineralogical composition, which are overlooked by conventional interpretation models. For instance, the impact of fabric features (e.g., laminations, structural/dispersed shale) and diverse constitution (e.g., clay, kerogen, pyrite, brine) to the broadband complex permittivity is not well understood. Therefore, the main objective of this work is to develop a framework capable of reliably quantifying the impact of different minerals and their corresponding spatial distribution on the multi-frequency complex dielectric permittivity measurements in clay-rich rocks.To achieve the aforementioned objective, we introduce a numerical algorithm to compute the dielectric dispersion in 3D pore-scale images of clay-rich rocks. We numerically solve the quasi-electrostatic approximation to Maxwell's equations in the frequency domain through the finite volume method. The clay particles are often sub-resolution in most imaging methods. Therefore, we introduce a workflow to calculate the effective admittance of the clay network. Furthermore, we derive a new equation to incorporate the induced polarization effect into the effective admittance of pyrite particles. Finally, we perform a sensitivity analysis of the complex dielectric permittivity of clay-rich rocks in the frequency range from 100 Hz to 1 GHz to the volumetric concentration and spatial distribution of clays, cation exchange capacity (CEC), volumetric concentration of pyrite, and the orientation of the electric field. Results showed that clays can enhance or diminish electrical conductivity values at different frequencies depending on their intrinsic properties and spatial distribution. Laminations, for instance, significantly enhance dielectric permittivity in the sub-MHz frequency range, but their effect is imperceptible at 1 GHz. Furthermore, the impact of the variation of CEC on permittivity is approximately proportional at 100Hz but negligible at 1 GHz.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


Author(s):  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Altina L. Nascimento ◽  
Luiz A. Fernandes ◽  
Natália N. de Lima ◽  
...  

ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L.), variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca) and magnesium (Mg) silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1) and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis). Soil organic matter (OM), pH, sum of bases (SB), effective cation exchange capacity (CEC(t)), total cation exchange capacity (CEC(T)), base saturation (V%) and potential acidity (H + Al) were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 93 ◽  
Author(s):  
GP Gillman

The cation exchange capacity of six surface soils from north Queensland and Hawaii has been measured over a range of pH values (4-6) and ionic strength values (0.003-0.05). The results show that for variable charge soils, modest changes in electrolyte ionic strength are as important in their effect on caton exchange capacity as are changes in pH values.


Sign in / Sign up

Export Citation Format

Share Document