1V supply 16-bit second order Sigma-Delta modulator in a 90nm CMOS process

Author(s):  
Rochelle Marie F. Amistoso ◽  
Michael Joe A. Bautista ◽  
Rafael Karlo D.P. Delos Santos ◽  
Joana Rochelle R. Ortiz ◽  
Louis P. Alarcon ◽  
...  
2018 ◽  
Vol 7 (2.16) ◽  
pp. 38
Author(s):  
Anshu Gupta ◽  
Lalita Gupta ◽  
R K. Baghel

A second-order sigma delta modulator that uses an operational transconductance amplifier as integrator and latch comparator as quantizer. The proposed technique where a low power high gain OTA is used as integrator and another circuit called dynamic latch comparator with two tail transistors and two controlling switches are used to achieve high speed, low power and high resolution in second order delta sigma modulator. It enhances the power efficiency and compactness of the modulator by implementing these blocks as sub modules. A second order modulator has been designed to justify the effectiveness of the proposed design. Technology 180nm CMOS process is used to implement complete second order continuous time sigma delta modulator.  We introduce the sub threshold three stage OTA, which is a way of achieving low distortion operation with input referred noise at 1 KHz is equal to the 2.2647pV/   and with low power consumption of 296.72nW.  A high-speed, low-voltage and a low-power Double-Tail dynamic comparator is also proposed. The proposed structure is contrasted with past dynamic comparators. In this paper, the comparator’s delay will be investigated and systematic analysis are inferred. a novel comparator using two tail transistor is proposed, here circuitry of a customized comparator having two tail is changed for low power dissipation and also it operates fast at little supply voltages. By maintaining the outline and by including couple of transistors, during the regeneration strengthening of positive feedback can be maintained, this results in amazingly diminished delay parameter. It is investigated that in proposed design structure of comparator using two tail transistors, power consumption is reduced and delay time is also diminished to a great extent. The proposed comparator is having maximum clock frequency that is possibly expanded up to 1GHz at voltages of 1 V whereas it is dissipating 10.99 µW of power, individually. By using sub threshold three stage OTA and dynamic standard two tail latch comparator, designed second order sigma delta ADC will consume 29.95µW of power.


2004 ◽  
Vol 1 (3) ◽  
pp. 37-44 ◽  
Author(s):  
Dragisa Milovanovic ◽  
Milan Savic ◽  
Miljan Nikolic

As a part of wider project sigma-delta modulator was designed. It represents an A/D part of a power meter IC. Requirements imposed were: SNDR and dynamic range > 50 dB for maximum input swing of 250 mV differential at 50 Hz. Over sampling ratio is 128 with clock frequency of 524288 Hz which gives bandwidth of 2048 Hz. Circuit is designed in 3.3 V supply standard CMOS 0.35 ?m technology.


2014 ◽  
Vol 18 (2) ◽  
pp. 263-271
Author(s):  
Chulkyu Park ◽  
Kichang Jang ◽  
Hyojae Kim ◽  
Joongho Choi

2004 ◽  
Vol 39 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Mourad Loulou ◽  
Dominique Dallet ◽  
Nouri Masmoudi ◽  
Philippe Marchegay ◽  
Lotfi Kamoun

2013 ◽  
Vol 380-384 ◽  
pp. 3580-3583
Author(s):  
Ming Yuan Ren ◽  
Tuo Li ◽  
Chang Chun Dong

Based on requirements on high performance and high resolution of modulators, a fourth-order Sigma-Delta modulator for audio application is developed in this paper. The modulator is designed under the commercial 0.5μm CMOS process and the circuits are given simulations by Spectre. The sampling frequency of sigma-delta modulator is 11.264 MHz, and OSR is 256 within the 22 kHz signal bandwidth. Measure performance shows that Sigma-Delta modulator enables its maximum SNR to achieve 103.5dB, and the accuracy of Sigma-Delta modulator is up to 16 bit.


Sign in / Sign up

Export Citation Format

Share Document