Precision agriculture: On the accuracy of multilevel and clustered ANFIS models for sugarcane yield categorization

Author(s):  
L.S. Jayashree ◽  
N. Rajathi ◽  
Athish Thirumal
2021 ◽  
Vol 13 (2) ◽  
pp. 232
Author(s):  
Tatiana Fernanda Canata ◽  
Marcelo Chan Fu Wei ◽  
Leonardo Felipe Maldaner ◽  
José Paulo Molin

Yield maps provide essential information to guide precision agriculture (PA) practices. Yet, on-board yield monitoring for sugarcane can be challenging. At the same time, orbital images have been widely used for indirect crop yield estimation for many crops like wheat, corn, and rice, but not for sugarcane. Due to this, the objective of this study is to explore the potential of multi-temporal imagery data as an alternative for sugarcane yield mapping. The study was based on developing predictive sugarcane yield models integrating time-series orbital imaging and a machine learning technique. A commercial sugarcane site was selected, and Sentinel-2 images were acquired from the beginning of the ratoon sprouting until harvesting of two consecutive cropping seasons. The predictive yield models RF (Random forest) and MLR (Multiple Linear Regression) were developed using orbital images and yield maps generated by a commercial sensor-system on harvesting. Original yield data were filtered and interpolated with the same spatial resolution of the orbital images. The entire dataset was divided into training and testing datasets. Spectral bands, especially the near-infrared at tillering crop stage showed greater contribution to predicting sugarcane yield than the use of derived spectral vegetation indices. The Root Mean Squared Error (RMSE) obtained for the RF regression based on multiple spectral bands was 4.63 Mg ha−1 with an R2 of 0.70 for the testing dataset. Overall, the RF regression had better performance than the MLR to predict sugarcane yield.


2022 ◽  
Vol 276 ◽  
pp. 108360
Author(s):  
Si Yang Han ◽  
Thomas Bishop ◽  
Patrick Filippi

2020 ◽  
pp. 637-656 ◽  
Author(s):  
Marco Medici ◽  
Søren Marcus Pedersen ◽  
Giacomo Carli ◽  
Maria Rita Tagliaventi

The purpose of this study is to analyse the environmental benefits of precision agriculture technology adoption obtained from the mitigation of negative environmental impacts of agricultural inputs in modern farming. Our literature review of the environmental benefits related to the adoption of precision agriculture solutions is aimed at raising farmers' and other stakeholders' awareness of the actual environmental impacts from this set of new technologies. Existing studies were categorised according to the environmental impacts of different agricultural activities: nitrogen application, lime application, pesticide application, manure application and herbicide application. Our findings highlighted the effects of the reduction of input application rates and the consequent impacts on climate, soil, water and biodiversity. Policy makers can benefit from the outcomes of this study developing an understanding of the environmental impact of precision agriculture in order to promote and support initiatives aimed at fostering sustainable agriculture.


2018 ◽  
Vol 7 (1) ◽  
pp. 2574-2579
Author(s):  
Divya Uniyal ◽  
◽  
Sourabh Dangwal ◽  
Govind Singh Negi ◽  
Saurabh Purohit ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Piekarczyk

AbstractWith increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.


2019 ◽  
Vol 7 (5) ◽  
pp. 1277-1282
Author(s):  
Bharath Kumar R ◽  
Balakrishna K ◽  
Bency Celso A ◽  
Siddesha M ◽  
Sushmitha R

Sign in / Sign up

Export Citation Format

Share Document