High-performance hybrid organic-inorganic perovskite nanoparticles based piezoelectric energy harvester

Author(s):  
Ran Ding ◽  
Fei Gao ◽  
Xiaohua Feng ◽  
Rahul Kishor ◽  
Huaxi Sun ◽  
...  
2018 ◽  
Vol 5 (23) ◽  
pp. 1801167 ◽  
Author(s):  
Alam Mahmud ◽  
Asif Abdullah Khan ◽  
Peter Voss ◽  
Taylan Das ◽  
Eihab Abdel‐Rahman ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (14) ◽  
pp. 10662-10666 ◽  
Author(s):  
Dongjin Kim ◽  
Hee Seok Roh ◽  
Yeontae Kim ◽  
Kwangsoo No ◽  
Seungbum Hong

We designed and fabricated a high performance spring-type piezoelectric energy harvester that selectively collects current from the inner part of a spring shell.


2014 ◽  
Vol 7 (12) ◽  
pp. 4035-4043 ◽  
Author(s):  
Chang Kyu Jeong ◽  
Kwi-Il Park ◽  
Jung Hwan Son ◽  
Geon-Tae Hwang ◽  
Seung Hyun Lee ◽  
...  

We present a self-powered all-flexible light-emitting optoelectronic device using a flexible and high-performance piezoelectric energy harvester with a robustly developed flexible and vertically structured inorganic LED array.


2016 ◽  
Vol 25 (12) ◽  
pp. 125015 ◽  
Author(s):  
Zhou Zeng ◽  
Rongyu Xia ◽  
Linlin Gai ◽  
Xian Wang ◽  
Di Lin ◽  
...  

2018 ◽  
Vol 6 (34) ◽  
pp. 16439-16449 ◽  
Author(s):  
Mengjun Wu ◽  
Ting Zheng ◽  
Haiwu Zheng ◽  
Jifang Li ◽  
Weichao Wang ◽  
...  

A flexible piezoelectric nanogenerator (PENG) was fabricated based on a new inorganic piezoelectric KNN–BNZ–AS–Fe, which exhibited the great potential in energy harvesting and self-powered mechanosensing.


Author(s):  
Tae Hyun Sung ◽  
QUAN WANG ◽  
Kyung Bum Kim ◽  
Sang Bum Woo

A high-performance Lead-free Piezoelectric Energy Harvester (LPEH) based on a Ba0.85Ca0.15Ti0.90Zr0.10O3 + CuO 0.3 wt% (BCTZC0.3) composite was fabricated by sintering at 1450℃. The BCTZC0.3 composite, which has an enhanced high-energy-conversion constant (〖d_33×g〗_33), shows improved piezoelectric power-generation performance when compared with conventional piezoelectric energy harvesters. The BCTZC0.3-based LPEH produces instantaneous maximum power of 8.2 mW and an energy density of 107.9 mW/cm3 in a weak magnetic field of 250 μT. This energy harvester can be used to charge a capacitor and operate a wireless sensor network (WSN) system to provide temperature sensing and radio-frequency (RF) transmission in a 250 μT magnetic field. The proposed LPEH is a promising green-energy device for potentially self-powering WSN systems when applied.


2022 ◽  
pp. 152808372110575
Author(s):  
Shohreh Mashayekhan ◽  
Hannaneh Kabir ◽  
Hadis Kamalidehghan ◽  
Roohollah Bagherzadeh ◽  
Mohammad Sajad Sorayani Bafqi

Lithium batteries have been widely used to power up implantable medical devices such as pacemakers that are often designed to treat, diagnose, and prevent different diseases. However, due to their limited capacity and lifetime, patients have to undergo a surgical procedure to replace the discharged battery. Recently, nanogenerators have been emerged and are broadly accepted since they can convert tiny biomechanical forces, such as heartbeats, into electrical energy. This study aims to manufacture a biocompatible and high-performance piezoelectric energy harvester (PEH) that is capable to be charged by the energy received from the heartbeat and store the generated voltage. In this research, a hybrid structure of poly (vinylidene fluoride) (PVDF) coupling with polyamide-11 (PA-11) was fabricated using dual electrospinning to enhance the piezoelectric properties of the intended PEH. The piezoelectric test results show an acceptable increase in nanofibers’ piezoelectric sensitivity from 62.87 mV/N to 75.75 mV/N by adding 25% (v/v) of PA-11 to PVDF, indicating the synergistic effect of PVDF and PA-11. The specimen PVDF (75% v/v)-PA-11 (25% v/v) also showed the highest mechanical strength and consequently is suggested as the optimum sample. To further enhance the efficacy and sensitivity of PEH to convert the small mechanical forces into an acceptable voltage, 15% (w/w) of barium titanate (BaTiO3) nanoparticles were added to the hybrid structure. The crystallinity and mechanical strength were noticeably increased by incorporating BaTiO3 nanoparticles into the fibrous structure, leading to a piezoelectric sensitivity of 107.52 mV/N. This result lays the groundwork for producing an effective piezoelectric patch that could be used as pacemaker batteries.


Sign in / Sign up

Export Citation Format

Share Document