A new scheme for gravity data interpretation by a faulted 2-D horizontal thin block: Theory, numerical examples and real data investigation

Author(s):  
Salah A. Mehanee
2016 ◽  
Vol 41 (2) ◽  
Author(s):  
Omar Eidous ◽  
M.K. Shakhatreh

A double kernel method as an alternative to the classical kernel method is proposed to estimate the population abundance by using line transect sampling. The proposed method produces an estimator that is essentially a kernel type of estimator use the kernel estimator twice to improve the performances of the classical kernel estimator. The feasibility of using bootstrap techniques to estimate the bias and variance of the proposed estimator is also addressed. Some numerical examples based on simulated and real data are presented. The results show that the proposed estimator outperforms existingclassical kernel estimator in most considered cases.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 464
Author(s):  
Victoriano García ◽  
María Martel-Escobar ◽  
F.J. Vázquez-Polo

This paper presents a three-parameter family of distributions which includes the common exponential and the Marshall–Olkin exponential as special cases. This distribution exhibits a monotone failure rate function, which makes it appealing for practitioners interested in reliability, and means it can be included in the catalogue of appropriate non-symmetric distributions to model these issues, such as the gamma and Weibull three-parameter families. Given the lack of symmetry of this kind of distribution, various statistical and reliability properties of this model are examined. Numerical examples based on real data reflect the suitable behaviour of this distribution for modelling purposes.


2016 ◽  
Vol 15 (2) ◽  
pp. ar17 ◽  
Author(s):  
Patricia Zagallo ◽  
Shanice Meddleton ◽  
Molly S. Bolger

We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-yr research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent to which students’ data interpretations were valid and/or generative. By analyzing small-group audio recordings during in-class activities, we demonstrated how students used instructor-provided models to build and refine data interpretations. Often, students used models to broaden the scope of data interpretations, tying conclusions to a biological significance. Coding analysis revealed several strategies and challenges that were common among students in this collaborative setting. Spontaneous argumentation was present in 82% of transcripts, suggesting that data interpretation using models may be a way to elicit this important disciplinary practice. Argumentation dialogue included frequent co-construction of claims backed by evidence from data. Other common strategies included collaborative decoding of data representations and noticing data patterns before making interpretive claims. Focusing on irrelevant data patterns was the most common challenge. Our findings provide evidence to support the feasibility of supporting students’ data-interpretation skills within a large lecture course.


2018 ◽  
Vol 22 ◽  
pp. 163-177 ◽  
Author(s):  
Nicholas Beck ◽  
Mélina Mailhot

In this paper, we address the estimation of multivariate value-at-risk (VaR) and tail value-at-risk (TVaR). We recall definitions for the bivariate lower and upper orthant VaR and bivariate lower and upper orthant TVaR, presented in Cossette et al. [Eur. Actuar. J. 3 (2013) 321–357 or Methodol. Comput. Appl. Probab. (2014) 1–22]. Here, we present estimators for both these measures extended to an arbitrary dimension d ≥ 2 and establish the consistency of our estimator for the lower and upper orthant TVaR in any dimension. We demonstrate these results by providing numerical examples that compare our estimator to theoretical results for both simulated and real data.


2006 ◽  
Vol 58 (7) ◽  
pp. 815-821 ◽  
Author(s):  
Hakim Saibi ◽  
Jun Nishijima ◽  
Sachio Ehara ◽  
Essam Aboud

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. G15-G23
Author(s):  
Andrea Vitale ◽  
Domenico Di Massa ◽  
Maurizio Fedi ◽  
Giovanni Florio

We have developed a method to interpret potential fields, which obtains 1D models by inverting vertical soundings of potential field data. The vertical soundings are built through upward continuation of potential field data, measured on either a profile or a surface. The method assumes a forward problem consisting of a volume partitioned in layers, each of them homogeneous and horizontally finite, but with the density changing versus depth. The continuation errors, increasing with the altitude, are automatically handled by determining the coefficients of a third-order polynomial function of the altitude. Due to the finite size of the source volume, we need a priori information about the total horizontal extent of the volume, which is estimated by boundary analysis and optimized by a Markov chain process. For each sounding, a 1D inverse problem is independently solved by a nonnegative least-squares algorithm. Merging of the several inverted models finally yields approximate 2D or 3D models that are, however, shown to generate a good fit to the measured data. The method is applied to synthetic models, producing good results for either perfect or continued data. Even for real data, i.e., the gravity data of a sedimentary basin in Nevada, the results are interesting, and they are consistent with previous interpretation, based on 3D gravity inversion constrained by two gamma-gamma density logs.


Sign in / Sign up

Export Citation Format

Share Document