Analysis of Direct-On-Line Synchronous Reluctance Machine Start-Up Using a Magnetic Field Decomposition

2017 ◽  
Vol 53 (3) ◽  
pp. 1852-1859 ◽  
Author(s):  
Juha Tampio ◽  
Tero Kansakangas ◽  
Saku Suuriniemi ◽  
Jere Kolehmainen ◽  
Lauri Kettunen ◽  
...  
1997 ◽  
Vol 36 (4) ◽  
pp. 191-198
Author(s):  
G. Standen ◽  
P. J. Insole ◽  
K. J. Shek ◽  
R. A. Irwin

The application of laser diffraction particle monitoring to the performance optimisation of a pilot clarifier and full-scale rapid gravity filters (RGF), operating on water supply works in Hampshire, is described. Furthermore the dosing of powdered activated carbon (PAC) into the works' clarifiers has been evaluated in terms of RGF performance. A costly proposal to install a third filter medium was subsequently abandoned when it was found that particle numbers in the filtered water were consistently below 1×102/ml. Various combinations and doses of coagulants and flocculant aids, shown to give optimum particulates removal during intensive jar testing trials, were transferred to the pilot clarifier. Particle monitoring enabled a more accurate derivation of suitable blanket chemistry and optimum blanket heights than turbidity changes. Raw water turbidities were 10-15 NTU at start-up with corresponding counts beyond the upper limit of the particle monitor. An on-line dilution system was developed to overcome this problem. Latex bead (4.33 μm) and Lycopodium spore (4-5 μm) suspensions (about 1 × 109 particles) were injected into the pilot clarifier to assess the removal efficiency of Cryptosporidium-sized particles. Reductions of about 1.7 log and 2.6 log were achieved for the beads and spores, respectively. Particle distributions of various PAC's and a bentonite were obtained in order to assess their potential effects on the coagulation process during clarification. Bentonite was also beneficial as an on-line means of checking particle monitor response and calibration. The works' filters achieved 1.5 to 2.0 log removals of 2-5 μm particles without media addition or operational changes. Combined clarification and filtration gave better particulates removal than two-stage microfiltration.


2021 ◽  
Vol 13 (8) ◽  
pp. 4379
Author(s):  
Linjie Ren ◽  
Guobin Lin ◽  
Yuanzhe Zhao ◽  
Zhiming Liao

In rail transit traction, due to the remarkable energy-saving and low-cost characteristics, synchronous reluctance motors (SynRM) may be a potential substitute for traditional AC motors. However, in the parameter extraction of SynRM nonlinear magnetic model, the accuracy and robustness of the metaheuristic algorithm is restricted by the excessive dependence on fitness evaluation. In this paper, a novel probability-driven smart collaborative performance (SCP) is defined to quantify the comprehensive contribution of candidate solution in current population. With the quantitative results of SCP as feedback in-formation, an algorithm updating mechanism with improved evolutionary quality is established. The allocation of computing resources induced by SCP achieves a good balance between exploration and exploitation. Comprehensive experiment results demonstrate better effectiveness of SCP-induced algorithms to the proposed synchronous reluctance machine magnetic model. Accuracy and robustness of the proposed algorithms are ranked first in the comparison result statistics with other well-known algorithms.


Sign in / Sign up

Export Citation Format

Share Document