scholarly journals Single-Phase Simplified Split-Source Inverter (S3I) for Boost DC–AC Power Conversion

2019 ◽  
Vol 66 (10) ◽  
pp. 7643-7652 ◽  
Author(s):  
Sze Sing Lee ◽  
Adrian Soon Theam Tan ◽  
Dahaman Ishak ◽  
Rosmiwati Mohd-Mokhtar
2015 ◽  
Vol 30 (2) ◽  
pp. 860-870 ◽  
Author(s):  
Euzeli Cipriano dos Santos ◽  
Nady Rocha ◽  
Cursino Brandao Jacobina

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 931
Author(s):  
Saghir Amin ◽  
Hyun-Hwa Lee ◽  
Woojin Choi

In two-stage single-phase inverters, inherent double line frequency ripple is present at both the input and output of the front-end converter. Generally, large electrolytic capacitors are used to eliminate this double line frequency ripple. It is well known that low frequency ripple shortens the lifespan of capacitors. Hence, the system reliability can get worse. In order to eliminate the double line frequency ripple, additional hardware combined with an energy storage device is required in most of the methods developed so far. In this paper, a novel power-decoupling control method is proposed to eliminate the double line frequency ripple at the front-end converter of two-stage single phase DC/AC power conversion systems. The proposed control algorithm is composed of two loops, a ripple compensation loop and an average voltage control loop, and no extra hardware is required. Since the proposed method does not require information from the phase-locked-loop (PLL) of the inverter, it is independent of inverter control. In order to verify the validity and feasibility of the proposed algorithm a 5 kW Dual Active Bridge (DAB) DC/DC converter and a single-phase inverter are implemented. The effectiveness of the proposed method is verified through the simulation and experimental results.


Author(s):  
Bin Liu ◽  
Dongran Song ◽  
Deqiang He ◽  
Shaojian Song ◽  
Jian Yang ◽  
...  
Keyword(s):  

Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Jaemin Kim ◽  
Donghwa Shin ◽  
Donkyu Baek ◽  
Jaehyun Park

AC power adapters for battery-operated systems, such as smartphones and notebook computers, not only supply run-time power to operate the devices but also charge the built-in batteries. The capacity of the adapter is optimized for the average power demand rather than the maximum power demand to reduce the size and weight of the adapter. Such a reduced capacity adapter may cause the battery to age even when the device is operated with the power adapter while under higher power demand, which is different from the expectation of most users. A recent study proposed a supercapacitor assist architecture to reduce the battery aging when the battery is powered by the adapter. However, the previous work only shows the potential of the architecture. In this work, we propose a design methodology to find the optimal setup for the supercapacitor hybrid architecture considering supercapacitor array structure and power conversion efficiency. The results show that a supercapacitor having 17.5 mF capacity and 20 V withstand voltage is enough to supply the deficient energy of a reduced capacity power adapter.


Author(s):  
M. S. Chye ◽  
J. A. Soo ◽  
Y. C. Tan ◽  
M. Aizuddin ◽  
S. Lee ◽  
...  

This paper presents a single-phase multilevel inverter (MLI) with simpler basic unit cells. The proposed MLI is able to operate in two modes, i.e. charge mode to charge the batteries, and inverter mode to supply AC power to load, and therefore, it is inherently suitable for photovoltaic (PV) power generation applications. The proposed MLI requires lower number of power MOSFETs and gate driver units, which will translate into higher cost saving and better system reliability. The power MOSFETs in the basic unit cells and H-bridge module are switched at near fundamental frequency, i.e. 100 Hz and 50 Hz, respectively, resulting in lower switching losses. For low total harmonic distortion (THD) operation, a deep scanning method is employed to calculate the switching angles of the MLI. The lowest THD obtained is 8.91% at modulation index of 0.82. The performance of the proposed MLI (9-level) has been simulated and evaluated experimentally. The simulation and experimental results are in good agreement and this confirms that the proposed MLI is able to produce an AC output voltage with low THD.


Sign in / Sign up

Export Citation Format

Share Document