Asymptotic Frequency-Shift Properizer for Block Processing of Improper-Complex Second-Order Cyclostationary Random Processes

2014 ◽  
Vol 60 (7) ◽  
pp. 4083-4100 ◽  
Author(s):  
Jeongho Yeo ◽  
Joon Ho Cho
1999 ◽  
Vol 12 (2) ◽  
pp. 121-131 ◽  
Author(s):  
A. Ya. Dorogovtsev

In this paper we study an abstract stochastic equation of second order and stochastic boundary problem for the telegraph equation in a strip. We prove the existence of solutions, which are d-periodic (periodic in distribution) random processes.


Author(s):  
Toshihiro Konishi ◽  
Keisuke Okuno ◽  
Shintaro Izumi ◽  
Masahiko Yoshimoto ◽  
Hiroshi Kawaguchi

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8333
Author(s):  
Yang Bai ◽  
Xinliang Wang ◽  
Junru Shi ◽  
Fan Yang ◽  
Jun Ruan ◽  
...  

Second-order Zeeman frequency shift is one of the major systematic factors affecting the frequency uncertainty performance of cesium atomic fountain clock. Second-order Zeeman frequency shift is calculated by experimentally measuring the central frequency of the (1,1) or (−1,−1) magnetically sensitive Ramsey transition. The low-frequency transition method can be used to measure the magnetic field strength and to predict the central fringe of (1,1) or (−1,−1) magnetically sensitive Ramsey transition. In this paper, we deduce the formula for magnetic field measurement using the low-frequency transition method and measured the magnetic field distribution of 4 cm inside the Ramsey cavity and 32 cm along the flight region experimentally. The result shows that the magnetic field fluctuation is less than 1 nT. The influence of low-frequency pulse signal duration on the accuracy of magnetic field measurement is studied and the optimal low-frequency pulse signal duration is determined. The central fringe of (−1,−1) magnetically sensitive Ramsey transition can be predicted by using a numerical integrating of the magnetic field “map”. Comparing the predicted central fringe with that identified by Ramsey method, the frequency difference between these two is, at most, a fringe width of 0.3. We apply the experimentally measured central frequency of the (−1,−1) Ramsey transition to the Breit-Rabi formula, and the second-order Zeeman frequency shift is calculated as 131.03 × 10−15, with the uncertainty of 0.10 × 10−15.


Author(s):  
В.В. Егоров ◽  
С.А. Лобов ◽  
М.Л. Маслаков ◽  
А.Н. Мингалев

Рассмотрена задача оценки доплеровского смещения несущей частоты информационного одночастотного фа- зоманипулированного сигнала, если информационная последовательность неизвестна. Приведено описание метода оценки с использованием разности фаз первого и второго порядков. Представлены результаты численного моделирования. The problem of Doppler frequency shift estimation of the single-tone information signal with phase-shiftkeying modulation under conditions when the information sequence is unknown is considered. The description of the estimation method using the firstand second-order phase difference is given. The results of the numerical simulation are presented.


2013 ◽  
Vol E96.C (4) ◽  
pp. 546-552 ◽  
Author(s):  
Toshihiro KONISHI ◽  
Keisuke OKUNO ◽  
Shintaro IZUMI ◽  
Masahiko YOSHIMOTO ◽  
Hiroshi KAWAGUCHI

Sign in / Sign up

Export Citation Format

Share Document