Magnetization Reversal and Domain Wall Propagation Characteristics of Compound Magnetic Wire

1991 ◽  
Vol 6 (5) ◽  
pp. 415-421
Author(s):  
A. Matsushita ◽  
S. Abe ◽  
S. Ishiai ◽  
C.F. Jie
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Frąckowiak ◽  
Feliks Stobiecki ◽  
Gabriel David Chaves-O’Flynn ◽  
Maciej Urbaniak ◽  
Marek Schmidt ◽  
...  

AbstractRecent results showed that the ferrimagnetic compensation point and other characteristic features of Tb/Co ferrimagnetic multilayers can be tailored by He+ ion bombardment. With appropriate choices of the He+ ion dose, we prepared two types of lattices composed of squares with either Tb or Co domination. The magnetization reversal of the first lattice is similar to that seen in ferromagnetic heterostructures consisting of areas with different switching fields. However, in the second lattice, the creation of domains without accompanying domain walls is possible. These domain patterns are particularly stable because they simultaneously lower the demagnetizing energy and the energy associated with the presence of domain walls (exchange and anisotropy). For both lattices, studies of magnetization reversal show that this process takes place by the propagation of the domain walls. If they are not present at the onset, the reversal starts from the nucleation of reversed domains and it is followed by domain wall propagation. The magnetization reversal process does not depend significantly on the relative sign of the effective magnetization in areas separated by domain walls.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiangwei Cao ◽  
Yifei Chen ◽  
Tianli Jin ◽  
Weiliang Gan ◽  
Ying Wang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3403
Author(s):  
Luis C. C. Arzuza ◽  
Victor Vega ◽  
Victor M. Prida ◽  
Karoline O. Moura ◽  
Kleber R. Pirota ◽  
...  

Geometrically modulated magnetic nanowires are a simple yet efficient strategy to modify the magnetic domain wall propagation since a simple diameter modulation can achieve its pinning during the nanowire magnetization reversal. However, in dense systems of parallel nanowires, the stray fields arising at the diameter interface can interfere with the domain wall propagation in the neighboring nanowires. Therefore, the magnetic behavior of diameter-modulated nanowire arrays can be quite complex and depending on both short and long-range interaction fields, as well as the nanowire geometric dimensions. We applied the first-order reversal curve (FORC) method to bi-segmented Ni nanowire arrays varying the wide segment (45–65 nm diameter, 2.5–10.0 μm length). The FORC results indicate a magnetic behavior modification depending on its length/diameter aspect ratio. The distributions either exhibit a strong extension along the coercivity axis or a main distribution finishing by a fork feature, whereas the extension greatly reduces in amplitude. With the help of micromagnetic simulations, we propose that a low aspect ratio stabilizes pinned domain walls at the diameter modulation during the magnetization reversal. In this case, long-range axial interaction fields nucleate a domain wall at the nanowire extremities, while short-range ones could induce a nucleation at the diameter interface. However, regardless of the wide segment aspect ratio, the magnetization reversal is governed by the local radial stray fields of the modulation near null magnetization. Our findings demonstrate the capacity of distinguishing between complex magnetic behaviors involving convoluted interaction fields.


2003 ◽  
Vol 777 ◽  
Author(s):  
T. Devolder ◽  
M. Belmeguenai ◽  
C. Chappert ◽  
H. Bernas ◽  
Y. Suzuki

AbstractGlobal Helium ion irradiation can tune the magnetic properties of thin films, notably their magneto-crystalline anisotropy. Helium ion irradiation through nanofabricated masks can been used to produce sub-micron planar magnetic nanostructures of various types. Among these, perpendicularly magnetized dots in a matrix of weaker magnetic anisotropy are of special interest because their quasi-static magnetization reversal is nucleation-free and proceeds by a very specific domain wall injection from the magnetically “soft” matrix, which acts as a domain wall reservoir for the “hard” dot. This guarantees a remarkably weak coercivity dispersion. This new type of irradiation-fabricated magnetic device can also be designed to achieve high magnetic switching speeds, typically below 100 ps at a moderate applied field cost. The speed is obtained through the use of a very high effective magnetic field, and high resulting precession frequencies. During magnetization reversal, the effective field incorporates a significant exchange field, storing energy in the form of a domain wall surrounding a high magnetic anisotropy nanostructure's region of interest. The exchange field accelerates the reversal and lowers the cost in reversal field. Promising applications to magnetic storage are anticipated.


2021 ◽  
pp. 2100284
Author(s):  
Alejandro Jiménez ◽  
Esther Calle ◽  
Jose A. Fernandez-Roldan ◽  
Rafael P. del Real ◽  
Rastislav Varga ◽  
...  

2004 ◽  
Vol 70 (3) ◽  
Author(s):  
Hans C. Fogedby ◽  
John Hertz ◽  
Axel Svane

2017 ◽  
Vol 95 (22) ◽  
Author(s):  
Patryk Krzysteczko ◽  
James Wells ◽  
Alexander Fernández Scarioni ◽  
Zbynek Soban ◽  
Tomas Janda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document