scholarly journals Single Diameter Modulation Effects on Ni Nanowire Array Magnetization Reversal

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3403
Author(s):  
Luis C. C. Arzuza ◽  
Victor Vega ◽  
Victor M. Prida ◽  
Karoline O. Moura ◽  
Kleber R. Pirota ◽  
...  

Geometrically modulated magnetic nanowires are a simple yet efficient strategy to modify the magnetic domain wall propagation since a simple diameter modulation can achieve its pinning during the nanowire magnetization reversal. However, in dense systems of parallel nanowires, the stray fields arising at the diameter interface can interfere with the domain wall propagation in the neighboring nanowires. Therefore, the magnetic behavior of diameter-modulated nanowire arrays can be quite complex and depending on both short and long-range interaction fields, as well as the nanowire geometric dimensions. We applied the first-order reversal curve (FORC) method to bi-segmented Ni nanowire arrays varying the wide segment (45–65 nm diameter, 2.5–10.0 μm length). The FORC results indicate a magnetic behavior modification depending on its length/diameter aspect ratio. The distributions either exhibit a strong extension along the coercivity axis or a main distribution finishing by a fork feature, whereas the extension greatly reduces in amplitude. With the help of micromagnetic simulations, we propose that a low aspect ratio stabilizes pinned domain walls at the diameter modulation during the magnetization reversal. In this case, long-range axial interaction fields nucleate a domain wall at the nanowire extremities, while short-range ones could induce a nucleation at the diameter interface. However, regardless of the wide segment aspect ratio, the magnetization reversal is governed by the local radial stray fields of the modulation near null magnetization. Our findings demonstrate the capacity of distinguishing between complex magnetic behaviors involving convoluted interaction fields.

Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 548 ◽  
Author(s):  
Javier García Fernández ◽  
Víctor Vega Martínez ◽  
Andy Thomas ◽  
Víctor de la Prida Pidal ◽  
Kornelius Nielsch

First Order Reversal Curve (FORC) analysis has been established as an appropriate method to investigate the magnetic interactions among complex ferromagnetic nanostructures. In this work, the magnetization reversal mechanism of bi-segmented nanowires composed by long Co and Ni segments contacted at one side was investigated, as a model system to identify and understand the FORC fingerprint of a two-step magnetization reversal process. The resulting hysteresis loop of the bi-segmented nanowire array exhibits a completely different magnetic behavior than the one expected for the magnetization reversal process corresponding to each respective Co and Ni nanowire arrays, individually. Based on the FORC analysis, two possible magnetization reversal processes can be distinguished as a consequence of the ferromagnetic coupling at the interface between the Ni and Co segments. Depending on the relative difference between the magnetization switching fields of each segment, the softer magnetic phase induces the switching of the harder one through the injection and propagation of a magnetic domain wall when both switching fields are comparable. On the other hand, if the switching fields values differ enough, the antiparallel magnetic configuration of nanowires is also possible but energetically unfavorable, thus resulting in an unstable magnetic configuration. Making use of the different temperature dependence of the magnetic properties for each nanowire segment with different composition, one of the two types of magnetization reversal is favored, as demonstrated by FORC analyses.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3077
Author(s):  
Javier García ◽  
Jose A. Fernández-Roldán ◽  
Roque González ◽  
Miguel Méndez ◽  
Cristina Bran ◽  
...  

Magnetic nanomaterials are of great interest due to their potential use in data storage, biotechnology, or spintronic based devices, among others. The control of magnetism at such scale entails complexing the nanostructures by tuning their composition, shape, sizes, or even several of these properties at the same time, in order to search for new phenomena or optimize their performance. An interesting pathway to affect the dynamics of the magnetization reversal in ferromagnetic nanostructures is to introduce geometrical modulations to act as nucleation or pinning centers for the magnetic domain walls. Considering the case of 3D magnetic nanowires, the modulation of the diameter across their length can produce such effect as long as the segment diameter transition is sharp enough. In this work, diameter modulated Fe67Co33 ferromagnetic nanowires have been grown into the prepatterned diameter modulated nanopores of anodized Al2O3 membranes. Their morphological and compositional characterization was carried out by electron-based microscopy, while their magnetic behavior has been measured on both the nanowire array as well as for individual bisegmented nanowires after being released from the alumina template. The magnetic hysteresis loops, together with the evaluation of First Order Reversal Curve diagrams, point out that the magnetization reversal of the bisegmented FeCo nanowires is carried out in two steps. These two stages are interpreted by micromagnetic modeling, where a shell of the wide segment reverses its magnetization first, followed by the reversal of its core together with the narrow segment of the nanowire at once.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Frąckowiak ◽  
Feliks Stobiecki ◽  
Gabriel David Chaves-O’Flynn ◽  
Maciej Urbaniak ◽  
Marek Schmidt ◽  
...  

AbstractRecent results showed that the ferrimagnetic compensation point and other characteristic features of Tb/Co ferrimagnetic multilayers can be tailored by He+ ion bombardment. With appropriate choices of the He+ ion dose, we prepared two types of lattices composed of squares with either Tb or Co domination. The magnetization reversal of the first lattice is similar to that seen in ferromagnetic heterostructures consisting of areas with different switching fields. However, in the second lattice, the creation of domains without accompanying domain walls is possible. These domain patterns are particularly stable because they simultaneously lower the demagnetizing energy and the energy associated with the presence of domain walls (exchange and anisotropy). For both lattices, studies of magnetization reversal show that this process takes place by the propagation of the domain walls. If they are not present at the onset, the reversal starts from the nucleation of reversed domains and it is followed by domain wall propagation. The magnetization reversal process does not depend significantly on the relative sign of the effective magnetization in areas separated by domain walls.


SPIN ◽  
2019 ◽  
Vol 09 (01) ◽  
pp. 1950004
Author(s):  
Jingchun Wang ◽  
Floriano Cuccureddu ◽  
Rafael Ramos ◽  
Cormac Ó. Coileáin ◽  
Igor V. Shvets ◽  
...  

We present the possibility of enhancing magnetoresistance (MR) by controlling nanoscale domain wall (DW) width in a planar nanowire array. Results based on micromagnetic calculations show that DW width decreases with increasing exchange bias field and decreases with reducing exchange interaction between neighboring nanowires. Fe/Fe3O4 nanowire arrays were grown on [Formula: see text]-plane sapphire to demonstrate the feasibility of this concept, and an enhanced MR ratio of 3.7% was observed at room temperature. compared with flat and stepped Fe3O4 thin films.


2005 ◽  
Vol 877 ◽  
Author(s):  
Kristy M. Ainslie ◽  
Gaurav Sharma ◽  
Maureen A. Dyer ◽  
Craig A. Grimes ◽  
Michael V. Pishko

AbstractThe research described here investigates the hypothesis that nanoarchitecture contained in a nanowire array is capable of attenuating the adverse host response, biofouling, generated when medical devices, such as sensors, are implanted in the body. This adverse host response generates an avascular fibrous mass transfer barrier between the device and the analyte of interest, disabling the sensor. Numerous studies have indicated that surface chemistry and architecture modulated the host response. These findings lead us to hypothesize that nanostructured surfaces will significantly inhibit the formation of an avascular fibrous capsule. We are investigating whether vibrating magnetostrictive nanowires, formed in nanowire arrays, can prevent protein and cell adhesion. Magnetostrictive nanowires are fabricated by electroplating a ferromagnetic metal alloy into the pores of a nanoporous alumina template. The ferromagnetic nanowires are made to vibrate by altering the magnetic field surrounding the wires. Enzyme-linked immunosorbent assay (ELISA) and other protein assays were used to study protein adhesion on the nanowire arrays. These results display a reduced protein adhesion per surface area of static nanowires. The vibrating nanowires show a further reduction in protein adhesion, compared to static wires. Studies were also preformed to investigate the effects of nanoarchitecture have on cell adhesion. These studies were performed with both static and vibrating nanowires. Preliminary protein adhesion studies have shown that a nanowire arrays modulate protein adhesion in vitro.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiangwei Cao ◽  
Yifei Chen ◽  
Tianli Jin ◽  
Weiliang Gan ◽  
Ying Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document