Reliability nodal pricing considering CO2 emissions in a multi objective function

2019 ◽  
Vol 17 (10) ◽  
pp. 1616-1624
Author(s):  
Nestor Gonzalez Cabrera ◽  
Jacinto Torres Jimenez ◽  
Jose Miguel Garcia Guzman ◽  
Juan Pablo Serrano Rubio ◽  
Juan Ramon Rodriguez Rodriguez
2018 ◽  
Vol 24 (3) ◽  
pp. 84
Author(s):  
Hassan Abdullah Kubba ◽  
Mounir Thamer Esmieel

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real output power of each generator bus and reactive power of each generator bus within their limits. The proposed method in this thesis is the Flexible Continuous Genetic Algorithm or in other words the Flexible Real-Coded Genetic Algorithm (RCGA) using the efficient GA's operators such as Rank Assignment (Weighted) Roulette Wheel Selection, Blending Method Recombination operator and Mutation Operator as well as Multi-Objective Minimization technique (MOM). This method has been tested and checked on the IEEE 30 buses test system and implemented on the 35-bus Super Iraqi National Grid (SING) system (400 KV). The results of OPF problem using IEEE 30 buses typical system has been compared with other researches.     


2019 ◽  
Vol 8 (4) ◽  
pp. 9465-9471

This paper presents a novel technique based on Cuckoo Search Algorithm (CSA) for enhancing the performance of multiline transmission network to reduce congestion in transmission line to huge level. Optimal location selection of IPFC is done using subtracting line utilization factor (SLUF) and CSA-based optimal tuning. The multi objective function consists of real power loss, security margin, bus voltage limit violation and capacity of installed IPFC. The multi objective function is tuned by CSA and the optimal location for minimizing transmission line congestion is obtained. The simulation is performed using MATLAB for IEEE 30-bus test system. The performance of CSA has been considered for various loading conditions. Results shows that the proposed CSA technique performs better by optimal location of IPFC while maintaining power system performance


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 403
Author(s):  
Deyaa Ahmed ◽  
Mohamed Ebeed ◽  
Abdelfatah Ali ◽  
Ali S. Alghamdi ◽  
Salah Kamel

Optimal inclusion of a photovoltaic system and wind energy resources in electrical grids is a strenuous task due to the continuous variation of their output powers and stochastic nature. Thus, it is mandatory to consider the variations of the Renewable energy resources (RERs) for efficient energy management in the electric system. The aim of the paper is to solve the energy management of a micro-grid (MG) connected to the main power system considering the variations of load demand, photovoltaic (PV), and wind turbine (WT) under deterministic and probabilistic conditions. The energy management problem is solved using an efficient algorithm, namely equilibrium optimizer (EO), for a multi-objective function which includes cost minimization, voltage profile improvement, and voltage stability improvement. The simulation results reveal that the optimal installation of a grid-connected PV unit and WT can considerably reduce the total cost and enhance system performance. In addition to that, EO is superior to both whale optimization algorithm (WOA) and sine cosine algorithm (SCA) in terms of the reported objective function.


2018 ◽  
Vol 7 (4) ◽  
pp. 1-14 ◽  
Author(s):  
Kai-Rong Liang

The aim of this article is to propose a multi-objective decision-making method for researching and solving multi-attribute heterogeneous group decision-making problems. This is in the case that the characters of the decision information and decision makers' preferences are heterogeneous, and the weight information is incomplete. In this method, the multi-objective decision-making model, which considers the alternatives decision relative closeness and the preference of heterogeneous degree of decision makers in the objective function, is put forward. In addition, this article uses the minimax method to derive the multi-objective decision-making model and obtain the attribute weights and decision makers weights, and then the optimal scheme is established. Finally, an illustrative example shows the effectiveness of the proposed method.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mohamed Abdul Rasheed ◽  
Renuga Verayiah

Electricity generation from renewable energy sources such as solar energy is an emerging sustainable solution. In the last decade, this sustainable source was not only being used as a source of power generation but also as distributed generation (DG). Many literatures have been published in this field with the objective to minimize losses by optimizing the DG size and location. System losses and voltage profile go hand-in-hand; as a result, when system losses are minimized, eventually the voltage profile improves. With improvement in inverter technologies, PV-DG units do not have to operate at a unity power factor. The majority of proposed algorithms and methods do not consider power factor optimization as a necessary optimization. This article aims to optimize the size, location, and power factor of PV-DG units. The simulations are performed on the IEEE 33 bus radial distribution network and IEEE 14 bus transmission network. The methodologies developed in this article are divided into two sections. The first section aims to optimize the PV-DG size and location. A multi-objective function is developed by using system losses and a voltage deviation index. Genetic algorithm (GA) is used to optimize the multi-objective function. Next, analytical processes are developed for verification. The second section aims to further enhance PV-DG by optimizing the power factor of PV-DG. The simulation is performed for static load in both systems, which are the IEEE 33 bus radial distribution network and IEEE 14 bus transmission network. A mathematical analytical method was developed, and it was found to be sufficient to optimize the power factor of the PV-DG unit. The results obtained show that voltage stability indices help minimize the computation time by determining the optimal locations for DG placement in both networks. In addition, the GA method attained faster convergence than the analytical method and hence is the best optimal sizing for both test systems with minimum computation time. Additionally, the optimization of the power factor for both test systems has demonstrated further improvement in the voltage profile and loss minimization. In conclusion, the proposed methodology has shown promising results for both transmission and distribution networks.


Author(s):  
Safiye Turgay

Facility layout design problem considers the departments’ physcial layout design with area requirements in some restrictions such as material handling costs, remoteness and distance requests. Briefly, facility layout problem related to optimization of the layout costs and working conditions. This paper proposes a new multi objective simulated annealing algorithm for solving of the unequal area in layout design. Using of the different objective weights are generated with entropy approach and used in the alternative layout design. Multi objective function takes into the objective function and constraints. The suggested heuristic algorithm used the multi-objective parameters for initialization. Then prefered the entropy approach determines the weight of the objective functions. After the suggested improved simulated annealing approach applied to whole developed model. A multi-objective simulated annealing algorithm is implemented to increase the diversity and reduce the chance of getting layout conditions in local optima.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Mahdi Ershadi ◽  
Hossein Shams Shemirani

PurposeProper planning for the response phase of humanitarian relief can significantly prevent many financial and human losses. To this aim, a multi-objective optimization model is proposed in this paper that considers different types of injured people, different vehicles with determining capacities and multi-period logistic planning. This model can be updated based on new information about resources and newly identified injured people.Design/methodology/approachThe main objective function of the proposed model in this paper is minimizing the unsatisfied prioritized injured people in the network. Besides, the total transportation activities of different types of vehicles are considered as another objective function. Therefore, these objectives are optimized hierarchically in the proposed model using the Lexicographic method. This method finds the best value for the first objective function. Then, it tries to optimize transportation activities as the second objective function while maintaining the optimality of the first objective function.FindingsThe performances of the proposed model were analyzed in different cases and its robust approach for different problems was shown within the framework of a case study. Besides, the sensitivity analysis of results shows the logical behavior of the proposed model against various factors.Practical implicationsThe proposed methodology can be applied to find the best response plan for all crises.Originality/valueIn this paper, we have tried to use a multi-objective optimization model to guide and correct response programs to deal with the occurred crisis. This is important because it can help emergency managers to improve their plans.


Sign in / Sign up

Export Citation Format

Share Document