The calculation of the magnetic field from a current distribution: Application to finite element techniques

1978 ◽  
Vol 14 (5) ◽  
pp. 1076-1077 ◽  
Author(s):  
J. Wikswo
1976 ◽  
Vol 54 (5) ◽  
pp. 513-518 ◽  
Author(s):  
C. G. Gray ◽  
P. J. Stiles

The magnetic field due to a given current distribution, the interaction energy of a current distribution with an arbitrary external magnetic field, and the magnetostatic interaction energy between two current distributions are decomposed into multipolar components using spherical harmonic expansions. Diamagnetic interactions and the spin contributions to the multipole expansions are also discussed.


Author(s):  
Way-Jam Chen ◽  
Lily Shiau ◽  
Ming-Ching Huang ◽  
Chia-Hsing Chao

Abstract In this study we have investigated the magnetic field associated with a current flowing in a circuit using Magnetic Force Microscopy (MFM). The technique is able to identify the magnetic field associated with a current flow and has potential for failure analysis.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2792
Author(s):  
Wieslaw Lyskawinski ◽  
Wojciech Szelag ◽  
Cezary Jedryczka ◽  
Tomasz Tolinski

The paper presents research on magnetic field exciters dedicated to testing magnetocaloric materials (MCMs) as well as used in the design process of magnetic refrigeration systems. An important element of the proposed test stand is the system of magnetic field excitation. It should provide a homogeneous magnetic field with a controllable value of its intensity in the MCM testing region. Several concepts of a magnetic circuit when designing the field exciters have been proposed and evaluated. In the MCM testing region of the proposed exciters, the magnetic field is controlled by changing the structure of the magnetic circuit. A precise 3D field model of electromagnetic phenomena has been developed in the professional finite element method (FEM) package and used to design and analyze the exciters. The obtained results of the calculations of the magnetic field distribution in the working area were compared with the results of the measurements carried out on the exciter prototype. The conclusions resulting from the conducted research are presented and discussed.


2011 ◽  
Vol 24 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ivan Yatchev ◽  
Krastio Hinov ◽  
Iosko Balabozov ◽  
Kristina Krasteva

Several constructions of electromagnetic actuators with moving permanent magnet for Braille screen are studied. All they are formed from a basic one that consists of two coils, core and moving permanent magnet. The finite element method is used for modeling of the magnetic field and for obtaining the electromagnetic force acting on the mover. The static force-stroke characteristics are obtained for four different constructions of the actuator. The constructions with ferromagnetic disc between the coils ensure greater force than the ones without disc and can reach the required minimum force.


2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


2019 ◽  
Vol 86 (s1) ◽  
pp. 57-61 ◽  
Author(s):  
Sonia Bradai ◽  
Slim Naifar ◽  
Olfa Kanoun

AbstractHarvesting energy from ambient vibration sources is challenging due to its low characteristic amplitude and frequencies. In this purpose, this work presents a compact hybrid vibration converter based on electromagnetic and magnetoelectric principles working for a frequency bandwidth and under real vibration source properties. The combination of especially these two principles is mainly due to the fact that both converters can use the same changes of the magnetic field for energy harvesting. The converter was investigated using finite element analysis and validated experimentally. Results have shown that a frequency bandwidth up to 12 Hz with a characteristic resonant frequency at 24 Hz and a power density of 0.11mW/cm3 can be reached.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050013 ◽  
Author(s):  
Yin Liu ◽  
Shoue Chen ◽  
Xiaobo Tan ◽  
Changyong Cao

In this paper, we present an efficient finite element framework for modeling the finite deformations of slender magneto-active elastomers (MAE) under applied magnetic fields or currents. For the convenience of numerical modeling, magnetic field is defined at fixed spatial coordinates in the background space rather than in the elastic MAEs using material coordinates. The magnetic field will vary with free or localized currents while the spatial distribution of the magnetic field will evolve with the motion or deformation of the MAE materials, which is actuated by the surface or body forces induced by external magnetic fields or equivalent currents. A staggered strategy and a Riks method are introduced to solve the strongly coupled governing equations of the magnetic field and displacement field using finite element method. The mesh distortion along the interfaces between MAE domain and free-space domain is resolved by considering concurrent deformation of the mesh in these two domains. A few 2D numerical examples demonstrate the validity and efficiency of the developed model for simulating large deformation of MAE with non-uniform spatial magnetic field under different actuation sources such as free currents, magnetization or external magnetic field. This framework offers a new solution strategy for modeling mechano-magneto problems of MAEs and will help rational design and analysis of MAE-based actuators and soft robotics in the future.


Sign in / Sign up

Export Citation Format

Share Document