Walking Direction Estimation Based on Statistical Modeling of Human Gait Features With Handheld MIMU

2017 ◽  
Vol 22 (6) ◽  
pp. 2502-2511 ◽  
Author(s):  
Christophe Combettes ◽  
Valerie Renaudin
2021 ◽  
Author(s):  
Peter Müller ◽  
Ádam Schiffer

AbstractThe examination of the human gait cycle can be useful for physiotherapists for identifying and/or predicting body motion disorders and it provides important data about the patient's condition in many ways. In this paper, the progress of a special TheraSuit physiotherapy treatment of a child, who has reduced mobility due to cerebral palsy, has been investigated. Generally, this type of disorder is classified into strict levels and the effectiveness of the therapy is expressed by changing between distinct levels. On the other hand paper describes a new markerless self-developed movement analysis system, which is able to show the effectiveness of the treatment with quantitative parameters. These parameters are determined by statistical methods.


Author(s):  
Zhyar Q. Mawlood ◽  
Azhin T. Sabir

A biometric system offers automatic identification of an individual basedon characteristic possessed by the individual. Biometric identification systems are often categorized as physiological or behavioural characteristics.Gait as one of the behavioural biometric recognition aims to recognizean individual by the way he/she walk. In this paper we propose genderclassification based on human gait features using wavelet transform andinvestigates the problem of non-neutral gait sequences; Coat Wearing andcarrying bag condition as addition to the neutral gait sequences. We shallinvestigate a new set of feature that generated based on the Gait Energy Image and Gait Entropy Image called Gait Entropy Energy Image(GEnEI). Three different feature sets constructed from GEnEI basedon wavelet transform called, Approximation coefficient Gait EntropyEnergy Image, Vertical coefficient Gait Entropy Energy Image and Approximation & Vertical coefficients Gait Entropy Energy Image Finallytwo different classification methods are used to test the performance ofthe proposed method separately, called k-nearest-neighbour and SupportVector Machine. Our tests are based on a large number of experimentsusing a well-known gait database called CASIA B gait database, includes124 subjects (93 males and 31 females). The experimental result indicatesthat the proposed method provides significant results and outperform thestate of the art.


Author(s):  
L. R. Sudha ◽  
R. Bhavani

Deployment of human gait in developing new tools for security enhancement has received growing attention in modern era. Since the efficiency of any algorithm depends on the size of search space, the aim is to propose a novel approach to reduce the search space. In order to achieve this, the database is split into two based on gender and the search is restricted in the identified gender database. Then highly discriminant gait features are selected by forward sequential feature selection algorithm in the confined space. Experimental results evaluated on the benchmark CASIA B gait dataset with the newly proposed combined classifier kNN-SVM, shows less False Acceptance Rate (FAR) and less False Rejection Rate (FRR).


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8208
Author(s):  
Jaerock Kwon ◽  
Yunju Lee ◽  
Jehyung Lee

The model-based gait analysis of kinematic characteristics of the human body has been used to identify individuals. To extract gait features, spatiotemporal changes of anatomical landmarks of the human body in 3D were preferable. Without special lab settings, 2D images were easily acquired by monocular video cameras in real-world settings. The 2D and 3D locations of key joint positions were estimated by the 2D and 3D pose estimators. Then, the 3D joint positions can be estimated from the 2D image sequences in human gait. Yet, it has been challenging to have the exact gait features of a person due to viewpoint variance and occlusion of body parts in the 2D images. In the study, we conducted a comparative study of two different approaches: feature-based and spatiotemporal-based viewpoint invariant person re-identification using gait patterns. The first method is to use gait features extracted from time-series 3D joint positions to identify an individual. The second method uses a neural network, a Siamese Long Short Term Memory (LSTM) network with the 3D spatiotemporal changes of key joint positions in a gait cycle to classify an individual without extracting gait features. To validate and compare these two methods, we conducted experiments with two open datasets of the MARS and CASIA-A datasets. The results show that the Siamese LSTM outperforms the gait feature-based approaches on the MARS dataset by 20% and 55% on the CASIA-A dataset. The results show that feature-based gait analysis using 2D and 3D pose estimators is premature. As a future study, we suggest developing large-scale human gait datasets and designing accurate 2D and 3D joint position estimators specifically for gait patterns. We expect that the current comparative study and the future work could contribute to rehabilitation study, forensic gait analysis and early detection of neurological disorders.


Author(s):  
Hu Ng ◽  
Wooi-Haw Tan ◽  
Hau-Lee Tong ◽  
Junaidi Abdullah ◽  
Ryoichi Komiya
Keyword(s):  

Author(s):  
Rohilah Sahak ◽  
Nooritawati Md Tahir ◽  
Ahmad Ihsan Mohd Yassin ◽  
Fadhlan Hafizhelmi Kamaruzaman

<span>This study investigates the potential gait features that are related to human recognition using orthogonal least square (OLS). Firstly, video of 30 subjects walking in oblique view was recorded using Kinect. Next, all 20 skeleton joints in 3D space were extracted and further selected using OLS. Additionally, SVM with linear, polynomial and radial basis function (RBF) kernel was used to classify the selected features. As consequences, OLS was proven to be able to identify the significant features using all three kernels of SVM since all recognition accuracy attained is higher as compared to the original gait features. Results attained showed that the highest recognition accuracy was 90.67% using 48 skeleton joint points for SVM with linear as kernel, followed by 46 skeleton joint points for SVM with RBF kernel namely 88.33% and accuracy of 86.33% for 38 skeleton joint points using  polynomial kernel.</span>


Sign in / Sign up

Export Citation Format

Share Document