Inter-Client Interference Cancellation for Full-Duplex Networks With Half-Duplex Clients

2019 ◽  
Vol 27 (5) ◽  
pp. 2150-2163
Author(s):  
Kate Ching-Ju Lin ◽  
Kai-Cheng Hsu ◽  
Hung-Yu Wei
2018 ◽  
Vol 17 (5) ◽  
pp. 1076-1089 ◽  
Author(s):  
Wessam Afifi ◽  
Mohammad J. Abdel-Rahman ◽  
Marwan Krunz ◽  
Allen B. MacKenzie

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 375
Author(s):  
Derek Kwaku Pobi Asiedu ◽  
Ji-Hoon Yun

This paper investigates the power resource optimization problem for a new cognitive radio framework with a symbiotic backscatter-aided full-duplex secondary link under imperfect interference cancellation and other hardware impairments. The problem is formulated using two approaches, namely, maximization of the sum rate and maximization of the primary link rate, subject to rate constraints on the secondary link, and the solution for each approach is derived. The problem of a half-duplex secondary link is also solved. Simulation results show that the sum rate and exploitation of the full-duplex capability of the secondary link are strongly affected by both the problem objective and hardware impairments.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 7737-7745 ◽  
Author(s):  
Yurong Wang ◽  
Kui Xu ◽  
Aijun Liu ◽  
Xiaochen Xia
Keyword(s):  

Author(s):  
G. T. Watkins

Abstract Full duplex (FD) could potentially double wireless communications capacity by allowing simultaneous transmission and reception on the same frequency channel. A single antenna architecture is proposed here based on a modified rat-race coupler to couple the transmit and receive paths to the antenna while providing a degree of isolation. To allow the self-interference cancellation (SiC) to be maximized, the rat-race coupler was made tuneable. This compensated for both the limited isolation of the rat race and self-interference caused by antenna mismatch. Tuneable operation was achieved by removing the fourth port of the rat race and inserting a variable attenuator and variable phase shifter into the loop. In simulation with a 50 Ω load on the antenna port, better than −65 dB narrowband SiC was achieved over the whole 2.45 GHz industrial, scientific and medical (ISM) band. Inserting the S-parameters of a commercially available sleeve dipole antenna into the simulation, better than −57 dB narrowband SiC could be tuned over the whole band. Practically, better than −58 dB narrowband tuneable SiC was achieved with a practical antenna. When excited with a 20 MHz Wi-Fi signal, −42 dB average SiC could be achieved with the antenna.


2011 ◽  
Vol 383-390 ◽  
pp. 6840-6845 ◽  
Author(s):  
Yong Hong Gu ◽  
Wei Huang ◽  
Qiao Li Yang

To transmit and receive data over any network successfully, a protocol is required to manage the flow. High-level Data Link Control (HDLC) protocol is defined in Layer 2 of OSI model and is one of the most commonly used Layer 2 protocol. HDLC supports both full-duplex and half-duplex data transfer. In addition, it offers error control and flow control. Currently on the market there are many dedicated HDLC chips, but these chips are neither of control complexity nor of limited number of channels. This paper presents a new method for implementing a multi-channel HDLC protocol controller using Altera FPGA and VHDL as the target technology. Implementing a multi-channel HDLC protocol controller in FPGA offers the flexibility, upgradability and customization benefits of programmable logic and also reduces the total cost of every project which involves HDLC protocol controllers.


Sign in / Sign up

Export Citation Format

Share Document