Deep Levels in n-Type 4H-Silicon Carbide Epitaxial Layers Investigated by Deep-Level Transient Spectroscopy and Isochronal Annealing Studies

2016 ◽  
Vol 63 (2) ◽  
pp. 1083-1090 ◽  
Author(s):  
Mohammad A. Mannan ◽  
Khai V. Nguyen ◽  
Rahmi O. Pak ◽  
Cihan Oner ◽  
Krishna C. Mandal
2013 ◽  
Vol 740-742 ◽  
pp. 373-376 ◽  
Author(s):  
Kazuki Yoshihara ◽  
Masashi Kato ◽  
Masaya Ichimura ◽  
Tomoaki Hatayama ◽  
Takeshi Ohshima

We have characterized deep levels in as-grown and electron irradiated p-type 4H-SiC epitaxial layers by the current deep-level transient spectroscopy (I-DLTS) method. A part of the samples were irradiated with electrons in order to introduce defects. As a result, we found that electron irradiation to p-type 4H-SiC created complex defects including carbon vacancy or interstitial. Moreover, we found that observed deep levels are different between before and after annealing, and thus annealing may change structures of defects.


1996 ◽  
Vol 442 ◽  
Author(s):  
Yuri A. Stotski ◽  
Igor O. Usov ◽  
Alexander V. Suvorov

AbstractDeep levels in 6H-SiC wafers implanted with Al+ ions at high-temperature were studied using current deep level transient spectroscopy (iDLTS). Aluminum was implanted at a temperature of 1800 °C with an energy of 40 keV and a dose of 2 × 1016 cm−2 into n-type epitaxial layers with different carrier concentration. Four levels were found, at Ec−0.12, Ec−0.13, Ec−1.06 and Ev+0.35 eV. It was established that modification of the carrier concentration in original ntype 6H-SiC epitaxial layers affects the deep levels concentration. The relationship between the thickness of the space charge region and the relative deep level concentration was considered.


2002 ◽  
Vol 742 ◽  
Author(s):  
A. O. Evwaraye ◽  
S. R. Smith ◽  
W. C. Mitchel ◽  
M. A. Capano

ABSTRACTAluminum (Al) and argon (Ar) ions were implanted into n-type 4H-SiC epitaxial layers at 600 °C. The energy of the ions was 160 keV at a dose of 2 × 1016 cm-2. After annealing at 1600 °C for 5–60 minutes, Schottky diodes were fabricated on the ion implanted samples. Deep Level Transient Spectroscopy (DLTS) was used to characterize ion implantation induced defects. A defect at EC-0.18 eV was observed in the Al+ implanted devices annealed for five and fifteen minutes. However, annealing for 30 minutes produced an additional deeper defect at EC -0.24 eV. This defect annealed out after a sixty minute anneal. DLTS studies of Ar+ implanted devices showed six defect levels at EC -0.18 eV, EC -0.23 eV, EC -0.31 eV, EC -0.38eV, EC -0.72 eV, and EC -0.81eV. These defects are attributed to intrinsic-related defects. It is suggested that “hot” implantation of Al+ inhibits the formation of intrinsic-related defects. While “hot” implantation of Ar+ into 4H-SiC does not reduce the concentration of the vacancies and interstitials.


2002 ◽  
Vol 719 ◽  
Author(s):  
Masashi Kato ◽  
Masaya Ichimura ◽  
Eisuke Arai ◽  
Shigehiro Nishino

AbstractEpitaxial layers of 4H-SiC are grown on (0001) substrates inclined toward <1120> and <1100> directions. Defects in these films are characterized by deep level transient spectroscopy (DLTS) in order to clarify the dependence of concentrations and activation energies on substrate inclination. DLTS results show no such dependence on substrate inclination but show thickness dependence of the concentration.


Sign in / Sign up

Export Citation Format

Share Document