scholarly journals Assessment of Performance of New-Generation Silicon Photomultipliers for Simultaneous Neutron and Gamma Ray Detection

2018 ◽  
Vol 65 (9) ◽  
pp. 2554-2564 ◽  
Author(s):  
Marc A. Wonders ◽  
David L. Chichester ◽  
Marek Flaska
2018 ◽  
Vol 170 ◽  
pp. 07015 ◽  
Author(s):  
Marc A. Wonders ◽  
David L. Chichester ◽  
Marek Flaska

Silicon photomultipliers have received a great deal of interest recently for use in applications spanning a wide variety of fields, including nuclear safeguards and nonproliferation. For nuclear-related applications, the ability of silicon photomultipliers to discriminate neutrons from gamma rays using pulse shape discrimination when coupled with certain organic scintillators is a characteristic of utmost importance. This work reports on progress characterizing the performance of twenty different silicon photomultipliers from five manufacturers with an emphasis on pulse shape discrimination performance and timing. Results are presented on pulse shape discrimination performance as a function of overvoltage for 6-mm x 6-mm silicon photomultipliers, and the time response to stilbene is characterized for silicon photomultipliers of three different sizes. Finally, comparison with a photomultiplier tube shows that some new-generation silicon photomultipliers can perform as well as photomultiplier tubes in neutron-gamma ray discrimination.


Author(s):  
S.P. Ahlen ◽  
U. Becker ◽  
P. Fisher ◽  
Yu. Galaktionov ◽  
J. Goldstein ◽  
...  
Keyword(s):  

2016 ◽  
Vol 87 (11) ◽  
pp. 11E714 ◽  
Author(s):  
M. Nocente ◽  
D. Rigamonti ◽  
V. Perseo ◽  
M. Tardocchi ◽  
G. Boltruczyk ◽  
...  

Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 247
Author(s):  
Aaesha Almazrouei ◽  
Aaliya Khan ◽  
Abdullah Almesmari ◽  
Ahmed Albuainain ◽  
Ahmed Bushlaibi ◽  
...  

Terrestrial gamma ray flashes (TGF) are intense and prompt bursts of X- and gamma-rays of up to 100 MeV of energy. Typically associated with thunderstorm activity, TGFs are produced by bremsstrahlung effects of electrons accelerated in strong electric fields generated by lightning. TGFs can be effectively targeted by gamma detectors with enhanced time stamping capabilities onboard of satellites operating at near-Earth low obits (LEO) [1]. Light-1 is a miniature satellite, a 3U CubeSat designed to detect, monitor and study terrestrial gamma ray flashes in low Earth orbit. The two payload detectors are composed of a photomultiplier tube and silicon photomultipliers. The two detectors are mounted at two ends of the CubeSat and the proposed orientation of the CubeSat will ensure maximum TGF detection probability. To allow an increased frequency of data downlink, Khalifa University has collaborated with NanoAvionics Corp, and hence Light-1 has access to three ground stations situated across the map, Abu Dhabi in United Arab Emirates, Vilnius in Lithuania, and Aalborg in Denmark. The satellite expected to launch in late-2021 is currently in its assembly and integration phase. This paper describes mission, concept, objectives, success criteria, design, analysis, status, and the future plans of Light-1 satellite.


2020 ◽  
Vol 57 (1-2) ◽  
pp. 13-21 ◽  
Author(s):  
A.A. Bogdanov ◽  
E.E. Kholupenko ◽  
Yu.V. Tuboltsev ◽  
Yu.V. Chichagov

AbstractA novel cluster of sensitive detectors based on silicon photomultipliers (SiPM) is being developed for the Cherenkov gamma-ray telescope TAIGA-IACT (Tunka valley, Republic of Buryatia, Russia). The cluster will be able to detect Cherenkov radiation from extensive air showers in two wide bands: 250–300 nm (UV) and 250–700 nm (visible and UV). Each pixel consists of a Winston cone, 4 SiPMs with the total sensitive area of 144 mm2, and readout electronics based on fast analogue memory. During operation in the UV band, a UV-bandpass filter is used to suppress cluster sensitivity in the visible range. In order to evaluate the detection efficiency of the selected SiPMs, a specific software simulator of SiPM output signal has been developed. This simulator takes into account such inherent parameters of SiPMs as total number of microcells, their recharge time, the dark count rate, the effective detection area, the quantum efficiency, the crosstalk between microcells, as well as conditions of SiPM operation, namely, the background noise and the Ohmic load in the readout (front-end) electronics. With this simulator it is possible to determine the expected trigger threshold under given conditions and parameters of selected detectors. Based on preliminary simulations, OnSemi MicroFJ-60035 SiPM chips have been chosen for the novel cluster of TAIGA-IACT. These SiPMs have sensible efficiency in the ultraviolet range (5–20% in the 250–300 nm band) and are distinguished by the presence of a fast output, which allows one to capture a low amplitude signal above a relatively high background noise.


2005 ◽  
Vol 192 ◽  
pp. 459-466
Author(s):  
Alberto J. Castro-Tirado

SummarySince their discovery in 1967 Gamma-ray bursts (GRBs) have been puzzling to astrophysicists. With the advent of a new generation of X–ray satellites in the late 90’s, it was possible to carry out deep multi-wavelength observations of the counterparts associated with the long duration GRBs class just within a few hours of occurrence, thanks to the observation of the fading X-ray emission that follows the more energetic gamma-ray photons once the GRB event has ended. The fact that this emission (the afterglow) extends at longer wavelengths, led to the discovery of optical/IR/radio counterparts in 1997-2003, greatly improving our understanding of these sources. The classical, long duration GRBs, have been observed to originate at cosmological distances in a range of redshifts with 0.1685 ≤ z ≤ 4.50 implying energy releases of ~ 1051 ergs. The recent results on GRB 021004 and GRB 030329 confirm that the central engines that power these extraordinary events are due to be collapse of massive stars rather than the merging of compact objects as previously also suggested. Short GRBs still remain a mystery as no counterparts have been detected so far.


2020 ◽  
Vol 65 (6) ◽  
pp. 886-895
Author(s):  
E. E. Kholupenko ◽  
A. M. Krassilchtchikov ◽  
D. V. Badmaev ◽  
A. A. Bogdanov ◽  
Yu. V. Tuboltsev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document