Critical-Conduction-Mode-Based Soft-Switching Modulation for Three-Phase PV Inverters With Reactive Power Transfer Capability

2020 ◽  
Vol 35 (6) ◽  
pp. 5702-5713 ◽  
Author(s):  
Zhengrong Huang ◽  
Qiang Li ◽  
Fred C. Lee
2020 ◽  
Vol 29 (15) ◽  
pp. 2050237
Author(s):  
N. Kannan ◽  
S. Sutha

In distribution systems, it is important to guarantee the protected operating state of the power system by the transmission suppliers. To transmit a secure, dependable and economical supply of electric power, long separation bulk power transmission is fundamental. Despite that, the power transfer capacity of the power system is constrained because of the elements like thermal limits, voltage limits and security limits. Crow Search Optimizations (CSO) have been exhibited to be reasonable methodologies in taking care of nonlinear power system issues with Available Transfer Capability (ATC). It is conceivable to improve transmission capabilities. This proposed method based on the IEEE 30-bus system is considered with two distinct areas, and furthermore, the input source is a typical load system with a distributed network. There is a need to control the reactive power flow at the Point of Common Coupling (PCC) between the grids of various voltage levels. To operate a power system securely and furthermore to acquire the benefit of bulk power transfer, ATC evaluation is required. The load gets raised from 50% to 100% in the distribution side by including the thermal power plant (85% and 95% load is included) and with the procured condition, ATC and losses are to be determined. This ATC is determined for verified power supply to the consumers.


Author(s):  
Rahimi Baharom

<span lang="EN-US">This paper presents the verification of soft switching condition for three-phase AC to DC current injection hybrid resonant converter (CIHRC) with wireless power transfer (WPT) function. Details on the operation of current injection technique with the lossless zero voltage switching (ZVS) condition on shaping the high power factor of supply current waveforms are presented. With a suitable high switching frequency operation, the proposed resonant converter is capable to operate with ZVS conditions, thus, allowing reduction in the size of inductive and magnetic components. Selected results are also presented to verify the lossless ZVS condition for three-phase AC-DC CIHRC with WPT function.</span>


Author(s):  
Sheng How Goh ◽  
Tapan Kumur Saha ◽  
Zhao Yang Dong

Competitive market forces and the ever-growing load demand are two of the key issues that cause power systems to operate closer to their system stability boundaries. Open access has since introduced competition and therefore promotes inter-regional electrical power trades. However, the economic flows of electrical energy between interconnected regions are usually constrained by system physical limits, e.g. transmission lines capacity and generation active/reactive power capability etc. As such, there is a limitation to the capacity of electrical power that regions can export or import. This maximum allowable electrical power transfer is normally referred to as Total Transfer Capability (TTC). It is critical to understand that TTC does not necessarily represent a safe and reliable amount of inter-regional power transfer as one or more operational limits are usually binding when quantifying TTC. Hence, it is of interest that power system stability issues are being considered during power transfer capability assessment in order to provide a more appropriate and secure power transfer level.The aim of this paper is to formulate an Optimal Power Flow (OPF) algorithm, which is capable of evaluating inter-area power transfer capability considering mathematically-complex voltage collapse margins. Through a multi-objective optimization setup, the proposed OPF-based approach can reveal the nonlinear relationships, i.e. the pareto-optimal front, between transfer capability and voltage stability margins. The feasibility of this approach has been intensively tested on a 3-machine 9-bus and the IEEE 118-bus systems.


2019 ◽  
Vol 10 (2) ◽  
pp. 1269-1279 ◽  
Author(s):  
Dongsheng Yang ◽  
Xiongfei Wang ◽  
Fangcheng Liu ◽  
Kai Xin ◽  
Yunfeng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document