Material Characterization of Ti-Cu-Ni-Au(TCNA)-A New Low Cost Thin Film Conductor System

1975 ◽  
Vol 11 (4) ◽  
pp. 253-262 ◽  
Author(s):  
J. Morabito ◽  
J. Thomas ◽  
N. Lesh
ChemInform ◽  
2011 ◽  
Vol 42 (28) ◽  
pp. no-no
Author(s):  
Lin-Jer Chen ◽  
Jiunn-Der Liao ◽  
Yu-Ju Chuang ◽  
Yaw-Shyan Fu

2015 ◽  
Vol 1752 ◽  
pp. 125-130 ◽  
Author(s):  
Yamila M. Omar ◽  
Carlo Maragliano ◽  
Chia-Yun Lai ◽  
Francesco Lo Iacono ◽  
Nicolas Bologna ◽  
...  

ABSTRACTOne of the main areas of improvement in capacitive deionization technologies is the materials used for electrodes which have very specific requirements. In the present work, a wide range of material characterization techniques are employed to determine the suitability of a multiwall carbon nanostructure thin film as electrode material. The electrical, mechanical, surface and wetting characteristics are studied proving the membrane highly conductive (σ=7.25 103 S/m), having competitive electro-sorption capacity (11.7 F/g at 10 mV/s) and surface area (149 m2/g), strain rate dependent mechanical properties and hydrophobic wetting behavior.


Author(s):  
Amirul Hadi Azmi ◽  
Shaharin Fadzli Abd Rahman ◽  
Mastura Shafinaz Zainal Abidin

Paper electronics is an emerging technology to implement flexible and wearable electronics devices via ink printing process. This paper evaluates the feasibility of using conventional printing paper for coating process with graphene/cellulose ink. 4 different types of regularly used conventional printing papers were used as substrates in this work. The conductive graphene ink was prepared through exfoliation of graphite in cellulose solution. The paper substrates surface morphology and sheet resistance of the drop-casted conductive ink on each paper were analyzed and discussed. Glossy paper was found to be suitable paper substrate for the printing of the formulated ink due to its low surface roughness of 16 nm. The value of sheet resistance of the graphene/cellulose thin film can be lowered to 4.11 kΩ/sq by applying multiple drops. This work suggests that conventional printing paper may offer solution for highly scalable and low-cost paper electronics.


2006 ◽  
Vol 951 ◽  
Author(s):  
Huihua Shu ◽  
Jiehui Wan ◽  
John Shu ◽  
Hong Yang ◽  
Bryan A. Chin

ABSTRACTA passive chemiresistor micro-sensor was investigated for the detection of hydrazine compounds. Hydrazine compounds are a highly toxic and carcinogenic species exhibiting toxic effects in humans at very low levels of exposure. Therefore, a sensor capable of detecting ppb levels of hydrazine compounds is required to insure the safety of personnel. The present study describes the fabrication, testing, and characterization of a low-cost, ultrasensitive Poly (3-Hexylthiophene) (P3HT) thin film-based micro-sensor for the detection of hydrazine compounds. Standard microelectronic manufacturing techniques were used to form a micro-sensor composed of a silicon substrate, interdigitated gold electrodes, and P3HT sensing film. Responses of the micro-sensor to hydrazine compounds at different temperatures and concentration levels are reported. When exposed to 25 ppm hydrazine in nitrogen, the sensor's resistance was measured to change from a few ohms to over 10 Megaohms. The thermal stability of the P3HT micro-sensor and the method to improve thermal stability are also explored. Thermally annealing the P3HT micro-sensor was found to improve thermal stability at high temperatures. Moreover, the sensor exhibits good specificity to hydrazine and does not respond to the presence of NO2 and/or N2O.


2008 ◽  
Vol 14 (S3) ◽  
pp. 81-84 ◽  
Author(s):  
J.C. Oliveira ◽  
A. Cavaleiro

High temperatures in Solid Oxide Fuel Cells (SOFCs) place stringent requirements on the cell components materials which result in high material costs for interconnects and insulation and cause the degradation of the system. The development of Intermediate Temperature SOFCs (IT-SOFCs) will require electrolyte materials with higher ionic conductivity at moderate temperatures than the conventional yttria-stabilised zirconia (YSZ). Recently, lanthanum silicates with an apatite-like structure (La9,33Si6O26) have attracted considerable interest as potential materials for low cost electrolyte. Some of these materials show conductivities at 875 K comparable to, or better than, YSZ; their high level of oxide ion mobility was related to the presence of oxygen channels along the c axis which facilitate the diffusion of the anionic species (O2− for SOFCs applications). Another way to fulfil IT-SOFCs requirements is to decrease the electrolyte thickness to the micrometer range and, therefore, the ohmic drop at the electrolyte. Magnetron sputtering has already been used to synthesize thin film electrolytes for SOFCs owing to its versatility for depositing complex materials as well as its ability to control their composition and morphology. The manufacturing of thin film lanthanum silicate electrolytes by magnetron sputtering, with thicknesses in the micrometer range, can be achieved through the previous deposition of La-Si films and subsequent thermal oxidation. The present study focuses on the characterization of the morphological and structural changes upon oxidation of La-Si films deposited by magnetron sputtering.


2014 ◽  
Vol 14 (12) ◽  
pp. 9279-9284
Author(s):  
Joongpyo Shim ◽  
Jae-Sub Hahn ◽  
Soo-Ho Lee ◽  
Jaehyeong Lee

2013 ◽  
Vol 701 ◽  
pp. 172-175 ◽  
Author(s):  
Marmeezee Mohd Yusoff ◽  
Mohd Hanafi Ani ◽  
Suryanto

ZnO films were deposited on Cu substrate using electrodeposition and thermal oxidation method. The effect of deposited thin film thickness varied with deposition time was discussed. Synthesized ZnO films were characterized using XRD, FE-SEM and electrical measurement. The results from electrical measurement showed the deposited ZnO exhibits pinched hysteresis IV curves. The synthesized ZnO shows a potential applications and options in production of a non-complex and low cost memristor.


Sign in / Sign up

Export Citation Format

Share Document