Imaging Diagnostics and Gas Temperature Measurements of Atmospheric-Microwave- Induced Air Plasma Torch

2020 ◽  
Vol 48 (6) ◽  
pp. 2153-2162 ◽  
Author(s):  
Shiyang Huang ◽  
Cheng Liu ◽  
Ziyao Jie ◽  
Guixin Zhang
2020 ◽  
Vol 50 (3) ◽  
pp. 159-165 ◽  
Author(s):  
S. V. Anakhov ◽  
B. N. Guzanov ◽  
A. V. Matushkin ◽  
N. B. Pugacheva ◽  
Yu. A. Pykin

2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2016 ◽  
Vol 30 (9) ◽  
pp. 7704-7712 ◽  
Author(s):  
A. Pilatau ◽  
H. S. Medeiros ◽  
A. S. da Silva Sobrinho ◽  
G. Petraconi Filho

2014 ◽  
Author(s):  
Jerald E. Jones ◽  
Valerie L. Rhoades ◽  
Mark D. Mann ◽  
Todd Holverson

A new cutting process, a hybrid system, uses induction heating to heat the metal ahead of the plasma cutting torch. The process has demonstrated the ability to plasma cut steel parts at speeds of up to 4X the speed of the plasma torch without the induction heating. Although the total heat input per unit time is greater, because of the increase in speed, the heat which is conducted into the cut pieces is less. This causes less potential metallurgical damage, less potential distortion, and reduced coating damage and reduced emissions during cutting, in comparison to the plasma cutting process without the induction heating. The initial development was primarily for use in cutting nuclear submarine and aircraft carrier hulls, for scrapping after decommissioning. The process has been demonstrated cutting steel plates and can be used in ship production as well. The primary motivation of the SBIR project was to reduce the heating of the cut pieces, in order to reduce the particulate matter (PM) emissions which occur when coated ship hull material is cut. An induction coil is positioned in front of the plasma cutting torch, to bring the material to an elevated temperature of at least 1600° F, before the plasma is applied to the metal surface. Induction heating testing has shown that the 35 kW induction system can maintain the 1600° F surface temperature at travel speeds of above 220 inches per minute on steel as thick as 3 inches. Once the steel is at that temperature an air plasma torch can cut the metal much faster than cutting cold steel.


Author(s):  
Hejie Li ◽  
Guanghua Wang ◽  
Nirm Nirmalan ◽  
Samhita Dasgupta ◽  
Edward R. Furlong

A novel technique is developed to simultaneously measure hot surface and gas temperatures based on passive absorption/emission spectroscopy (PAS). This non-intrusive, in situ technique is the extension of multi-wavelength pyrometry to also measure gas temperature. The PAS technique uses hot surface (e.g., turbine blade) as the radiation source, and measures radiation signals at multiple wavelengths. Radiation signals at wavelengths with minimum interference from gas (mostly from water vapor and CO2) can be used to determine the hot surface temperature, while signals at wavelengths with gas absorption/emission can be used to determine the gas temperature in the line-of-sight. The detection wavelengths are optimized for accuracy and sensitivity for gas temperature measurements. Simulation results also show the effect of non-uniform gas temperature profile on measurement results. High pressure/temperature tests are conducted in single nozzle combustor rig to demonstrate sensor proof-of-concept. Preliminary engine measurement results shows the potential of this measurement technique. The PAS technique only requires one optical port, e.g., existing pyrometer or borescope port, to collect the emission signal, and thus provide practical solution for gas temperature measurement in gas turbine engines.


1981 ◽  
Vol 14 (8) ◽  
pp. 301-305 ◽  
Author(s):  
M. S. Wojtan ◽  
K. A. G. Jones

There is a need to make reliable gas temperature measurements in combustion research. Conventional suction pyrometers and the associated methods of estimating their error do not always give satisfactory results. A new suction pyrometer has been developed to meet the requirements of a specific project at the Coal Research Establishment of the NCB. The unit incorporates a means of estimating directly the error in the pyrometer reading at the time the gas temperature is measured. The pyrometer has been used to measure gas temperatures in a wide range of environments. The results demonstrate the advantages of using the new pyrometer.


Author(s):  
Jordi Estevadeordal ◽  
Dmitry Opaits ◽  
Chiranjeev Kalra

A laboratory investigation of Filtered Rayleigh Scattering (FRS) techniques for high-resolution and high-accuracy temperature measurements in rig tests with high pressures and temperatures and combustion is presented. Imaging techniques based on filtered Rayleigh scattering have the potential for two-dimensional (2D) and near wall measurement of gas velocity and temperature fields among other properties. For gas temperature measurements, laser Rayleigh scattering from gas molecules are typically captured with an ICCD camera and temperature can be inferred from the number density measured from the image intensities. The accuracy challenges associated with property spatial variations, gas composition, and pressure and temperature conditions are investigated for the rig test environments. Representative examples including mixing layer, jet and vortex flows and flame and combustion tests are presented.


2015 ◽  
Vol 41 (1) ◽  
pp. 265-273 ◽  
Author(s):  
S. Yugeswaran ◽  
P.V. Ananthapadmanabhan ◽  
L. Lusvarghi

Sign in / Sign up

Export Citation Format

Share Document