Automated Review of Distance Relay Settings Adequacy After the Network Topology Changes

2016 ◽  
Vol 31 (4) ◽  
pp. 1873-1881 ◽  
Author(s):  
M. Tasdighi ◽  
M. Kezunovic
2021 ◽  
Vol 11 (3) ◽  
pp. 1241
Author(s):  
Sergio D. Saldarriaga-Zuluaga ◽  
Jesús M. López-Lezama ◽  
Nicolás Muñoz-Galeano

Microgrids constitute complex systems that integrate distributed generation (DG) and feature different operational modes. The optimal coordination of directional over-current relays (DOCRs) in microgrids is a challenging task, especially if topology changes are taken into account. This paper proposes an adaptive protection approach that takes advantage of multiple setting groups that are available in commercial DOCRs to account for network topology changes in microgrids. Because the number of possible topologies is greater than the available setting groups, unsupervised learning techniques are explored to classify network topologies into a number of clusters that is equal to the number of setting groups. Subsequently, optimal settings are calculated for every topology cluster. Every setting is saved in the DOCRs as a different setting group that would be activated when a corresponding topology takes place. Several tests are performed on a benchmark IEC (International Electrotechnical Commission) microgrid, evidencing the applicability of the proposed approach.


2014 ◽  
Vol 989-994 ◽  
pp. 4629-4632
Author(s):  
Xiao Long Tan ◽  
Jia Zhou ◽  
Wen Bin Wang

Since the wireless mesh network topology dynamics and the radio channels instable, the design of wireless mesh network routing protocol become one of the key factors to determine the performance. This paper mainly studied the existing several kinds of typical three-layer mesh network routing protocol (DSDV and AODV), aimed at the defects of three-layer routing limited to the network topology changes, the paper proposed a network model based on two-layer routing. Forwarding the packet, establishing and maintaining the communication links are accomplished on the Mac layer. Simulation tests showed that two-layer routing has a big improvement on the efficiency of packet forwarding, and it effectively reduced the routing overhead and end-to-end delay simultaneously.


Information ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 212
Author(s):  
Zhiwei Yang ◽  
Weigang Wu

A dynamic network is the abstraction of distributed systems with frequent network topology changes. With such dynamic network models, fundamental distributed computing problems can be formally studied with rigorous correctness. Although quite a number of models have been proposed and studied for dynamic networks, the existing models are usually defined from the point of view of connectivity properties. In this paper, instead, we examine the dynamicity of network topology according to the procedure of changes, i.e., how the topology or links change. Following such an approach, we propose the notion of the “instant path” and define two dynamic network models based on the instant path. Based on these two models, we design distributed algorithms for the problem of information dissemination respectively, one of the fundamental distributing computing problems. The correctness of our algorithms is formally proved and their performance in time cost and communication cost is analyzed. Compared with existing connectivity based dynamic network models and algorithms, our procedure based ones are definitely easier to be instantiated in the practical design and deployment of dynamic networks.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1082 ◽  
Author(s):  
Ran Duo ◽  
Celimuge Wu ◽  
Tsutomu Yoshinaga ◽  
Jiefang Zhang ◽  
Yusheng Ji

With the arrival of 5G, the wireless network will be provided with abundant spectrum resources, massive data transmissions and low latency communications, which makes Vehicle-to-Everything applications possible. However, VANETs always accompany with frequent network topology changes due to the highly mobile feature of vehicles. As a result, the network performance will be affected by the frequent handover. In this paper, a seamless handover scheme is proposed where the Software-Defined Networking (SDN) and Mobile Edge Computing (MEC) technologies are employed to adapt to the dynamic topology change in VANETs. The introduction of SDN provides a global view of network topology and centralized control, which enables a stable transmission layer connection when a handover takes place, so that the upper layer performance is not influenced by the network changes. By employing MEC server, the data are cached in advance before a handover happens, so that the vehicle can restore normal communication faster. In order to confirm the superiority of our proposal, computer simulations are conducted from different aspects. The results show that our proposal can significantly improve the network performance when a handover happens.


2009 ◽  
Vol 5 (3) ◽  
pp. 276 ◽  
Author(s):  
Peddinti V. Gopalacharyulu ◽  
Vidya R. Velagapudi ◽  
Erno Lindfors ◽  
Eran Halperin ◽  
Matej Orešič

2019 ◽  
Vol 10 ◽  
Author(s):  
Viktor Müller ◽  
Julia A. M. Delius ◽  
Ulman Lindenberger

Author(s):  
Elmustafa Sayed Ali Ahmed ◽  
Zahraa Tagelsir Mohammed ◽  
Mona Bakri Hassan ◽  
Rashid A. Saeed

Internet of vehicles (IoV) has recently become an emerging promising field of research due to the increasing number of vehicles each day. It is a part of the internet of things (IoT) which deals with vehicle communications. As vehicular nodes are considered always in motion, they cause frequent changes in the network topology. These changes cause issues in IoV such as scalability, dynamic topology changes, and shortest path for routing. In this chapter, the authors will discuss different optimization algorithms (i.e., clustering algorithms, ant colony optimization, best interface selection [BIS] algorithm, mobility adaptive density connected clustering algorithm, meta-heuristics algorithms, and quality of service [QoS]-based optimization). These algorithms provide an important intelligent role to optimize the operation of IoV networks and promise to develop new intelligent IoV applications.


2019 ◽  
Author(s):  
Paria Rezaeinia ◽  
Kim Fairley ◽  
Piya Pal ◽  
François G. Meyer ◽  
R. McKell Carter

ABSTRACTA central goal in neuroscience is to understand how dynamic networks of neural activity produce effective representations of the world. Advances in the theory of graph measures raise the possibility of elucidating network topologies central to the construction of these representations. We leverage a result from the description of lollipop graphs to identify an iconic network topology in functional magnetic resonance imaging data and characterize changes to those networks during task performance and in populations diagnosed with psychiatric disorders. During task performance, we find that task-relevant subnetworks change topology, becoming more integrated by increasing connectivity throughout cortex. Analysis of resting-state connectivity in clinical populations shows a similar pattern of subnetwork topology changes; resting-scans becoming less default-like with more integrated sensory paths. The study of brain network topologies and their relationship to cognitive models of information processing raises new opportunities for understanding brain function and its disorders.AUTHOR SUMMARYOur mental lives are made up of a series of predictions about the world calculated by our brains. The calculations that produce these predictions are a result of how areas in our brain interact. Measures based on graph representations can make it clear what information can be combined and therefore help us better understand the computations the brain is performing. We make use of cutting-edge techniques that overcome a number of previous limitations to identify specific shapes in the functional brain network. These shapes are similar to hierarchical processing streams which play a fundamental role in cognitive neuroscience. The importance of these structures and the technique is highlighted by how they change under different task constraints and in individuals diagnosed with psychiatric disorders.


2012 ◽  
Vol 8 (1) ◽  
Author(s):  
Albert Briliakta G.S ◽  
Nugroho Agus Haryono ◽  
Joko Purwadi

Company networks are continually expanding to meet the needs of the company. Therefore the company must add or even change the structure of the network or network topology. In this case a network administrator must also change the network documentation ​​in accordance with the development, The documentation contains information from every device on the network. Topology changes can be difficult for network administrators in managing the network if it does not have good documentation. The application built by the author proved helpful in making the network documentation. It provide and assist network administrators in making the topology and document in the printed form that can be used as documentation of the network by the company. So it can help network administrators manage and maximize the network. Kata kunci : Network Documentation.


Sign in / Sign up

Export Citation Format

Share Document