scholarly journals Fault-Current Injection Strategies of Inverter-Based Generation for Fast Voltage Recovery

Author(s):  
Stefan Stankovic ◽  
Thierry Van Cutsem ◽  
Lennart Soder
Author(s):  
Pedro Rodriguez ◽  
Gustavo Medeiros ◽  
Alvaro Luna ◽  
Marcelo C. Cavalcanti ◽  
Remus Teodorescu

2021 ◽  
Vol 11 (21) ◽  
pp. 10437
Author(s):  
Boštjan Polajžer ◽  
Bojan Grčar ◽  
Jernej Černelič ◽  
Jožef Ritonja

This paper analyzes the influence of inverter-interfaced distributed generations’ (IIDGs) response during transmission network faults. The simplest and safest solution is to switch IIDGs off during network faults without impacting the network voltages. A more elaborate and efficient concept, required by national grid codes, is based on controlling the IIDGs’ currents, involving positive- and negative-sequence voltage measured at the connection point. In this way the magnitude and phase of the injected currents can be adjusted, although the generated power will depend on the actual line voltages at the connection point. Therefore, an improved concept is proposed to adjust IIDGs’ fault current injection through the required active and reactive power, employing the same voltage characteristics. The proposed, i.e., power-based concept, is more definite than the current-based one, since the required power will always be generated. The discussed concepts for the fault current injection by IIDGs were tested in different 110-kV networks with loop and radial topologies, and for different short-circuit capabilities of the aggregated network supply. Based on extensive numerical calculations, the power-based concept during transmission networks faults generates more reactive power compared to the current-based concept. However, the voltage support by IIDGs during transmission networks faults, regardless of the concept being used, is influenced mainly by the short-circuit capability of the aggregated network supply. As regards distance protection operation, it is influenced additionally by the network topology, i.e., in radial network topology, the remote relay’s operation can be delayed due to a largely seen impedance.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3371
Author(s):  
Kheng Oon ◽  
ChiaKwang Tan ◽  
A.H.A. Bakar ◽  
Hang Che ◽  
Jorinda Wong

As the development of renewable distributed generations (DGs) is growing rapidly, the autonomous self-healing microgrid had emerged as an effective solution for integrating renewable DGs in the distribution networks. However, before the autonomous self-healing microgrid can be realized, one of the main issues that needs to be resolved is the ability to utilize the most cost-effective protection system—overcurrent relays—to achieve the goal. However, the overcurrent relay is insensitive to the limited fault current contributed by the inverter-based distributed generation (IBDG). Therefore, this paper will propose a novel inverter fault current control with a reactive current injection (RCI) that injects the correct fault current vector, albeit with a limited magnitude, for detection by the cost-effective directional overcurrent relay. This paper will also evaluate the performances of the different RCI controls in delivering an efficient self-healing microgrid protection based on a directional overcurrent relay. The proposed self-healing protection scheme is tested with both a simple distribution test network and also the IEEE 16 bus test system, considering random system parameters like variations in IBDG location, fault location, load capacity and load power factor. Moreover, the performance of the proposed inverter RCI control is also tested under changing weather conditions.


2019 ◽  
Vol 139 (8) ◽  
pp. 522-526
Author(s):  
Kyoya Nonaka ◽  
Tadashi Koshizuka ◽  
Eiichi Haginomori ◽  
Hisatoshi Ikeda ◽  
Takeshi Shinkai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document