A Unified Design of Broadband Two-Degree-of-Freedom Vibration Energy Harvesting System for High-Quality Factor Generators

Author(s):  
Tomoya Miyoshi ◽  
Hiroyuki Mitsuya ◽  
Hiroshi Toshiyoshi ◽  
Yuji Suzuki
Author(s):  
Mingyi Liu ◽  
Wei-Che Tai ◽  
Lei Zuo

In rotational electromagnetic generator based vibration energy-harvesting systems, the generator rotor is an inerter. From analysis, it is found that the inerter decreases system frequency bandwidth in single-degree-of-freedom (SDOF) energy-harvesting systems. The maximum electric power output of a SDOF system is limited by mechanical damping and maximum stroke that allowed. Two-degree-of-freedom (2DOF) energy-harvesting systems was proposed in recent years and has been shown to have the potential to have better power, power/stroke ratio, and frequency bandwidth performance compared with SDOF systems. However, extra mass has to be added in most of the case. In this paper, a new design of inerter-based-2DOF energy-harvesting system was proposed by adding a spring in series with the inerter in SDOF system. No extra mass is added compared with its counterpart SDOF system. Optimal specific power at limited stroke were obtained by tuning system parameters, which includes resonance frequency ratio, spring ratio, mass ratio, and damping ratio. The contribution of each parameter to system performance was analyzed. The results show that the proposed inerter-based-2DOF system has better performance compared with the SDOF system. The inerter-based-2DOF can have larger specific power and larger power/stroke ratio over a wider frequency bandwidth. Simulation also show that improved performance not only obtained with sinusoidal excitation with constant displacement amplitude, but also with sinusoidal excitation with constant force amplitude.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3926
Author(s):  
Joanna Iwaniec ◽  
Grzegorz Litak ◽  
Marek Iwaniec ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
...  

In this paper, the frequency broadband effect in vibration energy harvesting was studied numerically using a quasi-zero stiffness resonator with two potential wells and piezoelectric transducers. Corresponding solutions were investigated for system excitation harmonics at various frequencies. Solutions for the higher voltage output were collected in specific branches of the power output diagram. Both the resonant solution synchronized with excitation and the frequency responses of the subharmonic spectra were found. The selected cases were illustrated and classified using a phase portrait, a Poincaré section, and recurrence plot (RP) approaches. Select recurrence quantification analysis (RQA) measures were used to characterize the discussed solutions.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7364
Author(s):  
Yi-Ren Wang ◽  
Ming-Ching Chu

This research proposes an energy harvesting system that collects the downward airflow from a helicopter or a multi-axis unmanned rotary-wing aircraft and uses this wind force to drive the magnet to rotate, generating repulsive force, which causes the double elastic steel system to slap each other and vibrate periodically in order to generate more electricity than the traditional energy harvesting system. The design concept of the vibration mechanism in this study is to allow the elastic steel carrying the magnet to slap another elastic steel carrying the piezoelectric patch to form a set of double elastic steel vibration energy harvesting (DES VEH) systems. The theoretical DES VEH mechanism of this research is composed of a pair of cantilever beams, with magnets attached to the free end of one beam, and PZT attached to the other beam. This study analyzes the single beam system first. The MOMS method is applied to analyze the frequency response of this nonlinear system theoretically, then combines the piezoelectric patch and the magneto-electric coupling device with this nonlinear elastic beam to analyze the benefits of the system’s converted electrical energy. In the theoretical study of the DES VEH system, the slapping force between the two elastic beams was considered as a concentrated load on each of the beams. Furthermore, both SES and DES VEH systems are studied and correlated. Finally, the experimental data and theoretical results are compared to verify the feasibility and correctness of the theory. It is proven that this DES VEH system can not only obtain the electric energy from the traditional SES VEH system but also obtain the extra electric energy of the steel vibration subjected to the slapping force, which generates optimal power to the greatest extent.


Sign in / Sign up

Export Citation Format

Share Document