A Microfluidic Flow Cytometer Composed of Double T-Type Constriction Channel with Predefined Fluorescence Detection Window, Enabling High-Throughput Characterization of Intrinsic Single-Cell Structural and Electrical Parameters

Author(s):  
Hongyan Liang ◽  
Yi Zhang ◽  
Minruihong Wang ◽  
Yueying Li ◽  
Deyong Chen ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tracy M. Yamawaki ◽  
Daniel R. Lu ◽  
Daniel C. Ellwanger ◽  
Dev Bhatt ◽  
Paolo Manzanillo ◽  
...  

Abstract Background Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. Results Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5′ v1 and 3′ v3 methods. We demonstrate that these methods have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures. Conclusion Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.


2013 ◽  
Vol 15 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Victoria Moignard ◽  
Iain C. Macaulay ◽  
Gemma Swiers ◽  
Florian Buettner ◽  
Judith Schütte ◽  
...  

2019 ◽  
Vol 97 (6) ◽  
pp. 630-637 ◽  
Author(s):  
Ke Wang ◽  
Xiaohao Sun ◽  
Yi Zhang ◽  
Yuanchen Wei ◽  
Deyong Chen ◽  
...  
Keyword(s):  

Lab on a Chip ◽  
2012 ◽  
Vol 12 (23) ◽  
pp. 5057 ◽  
Author(s):  
Joerg Martini ◽  
Michael I. Recht ◽  
Malte Huck ◽  
Marshall W. Bern ◽  
Noble M. Johnson ◽  
...  

2013 ◽  
Vol 48 ◽  
pp. 49-55 ◽  
Author(s):  
Lingling Yang ◽  
Tianxun Huang ◽  
Shaobin Zhu ◽  
Yingxing Zhou ◽  
Yunbin Jiang ◽  
...  

Lab on a Chip ◽  
2018 ◽  
Vol 18 (14) ◽  
pp. 2065-2076 ◽  
Author(s):  
Jun-Chau Chien ◽  
Ali Ameri ◽  
Erh-Chia Yeh ◽  
Alison N. Killilea ◽  
Mekhail Anwar ◽  
...  

This work presents a microfluidics-integrated label-free flow cytometry-on-a-CMOS platform for the characterization of the cytoplasm dielectric properties at microwave frequencies.


2020 ◽  
Author(s):  
Chi-Ming Kevin Li ◽  
Tracy M Yamawaki ◽  
Daniel R Lu ◽  
Daniel C Ellwanger ◽  
Dev Bhatt ◽  
...  

Abstract Background: Elucidation of immune populations with single-cell RNA-seq has greatly benefited the fieldof immunology by deepening the characterization of immune heterogeneity and leading to thediscovery of new subtypes. However, single-cell methods inherently suffer from limitations in therecovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropoutevents. This issue is often compounded by limited sample availability and limited prior knowledge ofheterogeneity, which can confound data interpretation.Results: Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. Weprepared 21 libraries under identical conditions of a defined mixture of two human and two murinelymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluatemethods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expressionsignatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5’v1 and 3’ v3 methods. We demonstrate that these methods have fewer drop-out events whichfacilitates the identification of differentially-expressed genes and improves the concordance of singlecellprofiles to immune bulk RNA-seq signatures.Conclusion: Overall, our characterization of immune cell mixtures provides useful metrics, which canguide selection of a high-throughput single-cell RNA-seq method for profiling more complex immunecellheterogeneity usually found in vivo.


Sign in / Sign up

Export Citation Format

Share Document