Potential Power Quality Benefits of Electric Vehicles

2013 ◽  
Vol PP (99) ◽  
pp. 1-8 ◽  

Electric vehicles (EVs) are likely to have a continued presence in the light-vehicle market in the next few decades. As a result, EV charging will put an extra burden on the distribution grid and adjustments need to be made in some cases. On the other hand, EVs have the potential to support the grid as well. This paper presents a single-phase bidirectional charger topology which pairs up a photovoltaic (PV) source with an EV charger resulting in production cost reduction. The presented topology is then used for vehicle-to-grid (V2G) services. The main focus of this paper is on power quality services which only slightly discharge the battery. Among these services, it studies the possibility of local reactive injection of EVs connected to the grid through a single-phase charger to compensate for voltage drops caused by motor startup or inductive loads. It also studies the possibility of active power injection of EVs for short time periods during PV transients in cloudy weather to keep the system stable. It also studies the potential of EVs to help during low voltage ride-through of the PV sources. The studies are performed using Simulink simulations and a real-time implementation in Real Time Digital Simulator (RTDS). The results demonstrate the effectiveness of power quality V2G services with small wear on the EV battery.

2018 ◽  
Vol 8 (8) ◽  
pp. 1333 ◽  
Author(s):  
Alexandre Lucas

As photovoltaic (PV) penetration increases in low-voltage distribution networks, voltage variation may become a problem. This is particularly important in residential single-phase systems, due to voltage unbalances created by the inflow of points in the network. The existing literature frequently refers to three-phase systems focusing on losses and voltage variations. Many studies tend to use case studies whose conclusions are difficult to replicate and generalise. As levels of residential PV rise, single-phase PV power injection levels, before voltage unbalances reach standard limits, become important to be investigated. In this study, an urban European reference network is considered, and using a real-time digital simulator, different levels of PV penetration are simulated. PV systems are connected to the same phase (unbalanced case), and are also evenly phase-distributed (balanced case). Considering a 2–3% unbalance limit, approximately 3.5–4.6 kW could be injected in every bus in an unbalanced scenario. With a balanced PV distribution, the power injected could reach 10–13 kW per bus. Buses closer to the power transformer allow higher power connections, due to cable distances and inferior voltage drops. Feeder length, loads considered during simulation, and cable shunt capacitance reactance influence the results the most.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6069
Author(s):  
Sajjad Haider ◽  
Peter Schegner

It is important to understand the effect of increasing electric vehicles (EV) penetrations on the existing electricity transmission infrastructure and to find ways to mitigate it. While, the easiest solution is to opt for equipment upgrades, the potential for reducing overloading, in terms of voltage drops, and line loading by way of optimization of the locations at which EVs can charge, is significant. To investigate this, a heuristic optimization approach is proposed to optimize EV charging locations within one feeder, while minimizing nodal voltage drops, cable loading and overall cable losses. The optimization approach is compared to typical unoptimized results of a monte-carlo analysis. The results show a reduction in peak line loading in a typical benchmark 0.4 kV by up to 10%. Further results show an increase in voltage available at different nodes by up to 7 V in the worst case and 1.5 V on average. Optimization for a reduction in transmission losses shows insignificant savings for subsequent simulation. These optimization methods may allow for the introduction of spatial pricing across multiple nodes within a low voltage network, to allow for an electricity price for EVs independent of temporal pricing models already in place, to reflect the individual impact of EVs charging at different nodes across the network.


2022 ◽  
Vol 305 ◽  
pp. 117718
Author(s):  
S. Torres ◽  
I. Durán ◽  
A. Marulanda ◽  
A. Pavas ◽  
J. Quirós-Tortós

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2191 ◽  
Author(s):  
Juyong Kim ◽  
Hongjoo Kim ◽  
Jintae Cho ◽  
Youngpyo Cho

This paper describes the design and field application of a high-efficiency single-phase AC/DC converter that is suitable for distribution lines. First, an appropriate AC/DC converter was designed in consideration of the environment of the application system. In order to ensure high efficiency and high reliability, we designed an optimum switching element and capacitor suitable for the converter, and the protection element of the AC/DC converter was designed based on these elements. The control function for the power converter suitable for an LVDC distribution system is proposed for highly reliable operation. The AC/DC converter was manufactured based on the design and its performance was verified during application in an actual low-voltage DC (LVDC) distribution grid through tests at the demonstration site. The application to a DC distribution system in an actual grid is very rare and it is expected that it will contribute to the expansion of LVDC distribution.


Author(s):  
J. L. Calero Lagares ◽  
J. M. Roldan Fernandez ◽  
Manuel Burgos Payan ◽  
Jesus M. Riquelme Santos

2010 ◽  
Vol 20 (3) ◽  
pp. 1339-1343 ◽  
Author(s):  
A-Rong Kim ◽  
Gyeong-Hun Kim ◽  
Kwang-Min Kim ◽  
Jin-Geun Kim ◽  
Dae-Won Kim ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5770 ◽  
Author(s):  
Karthikeyan Nainar ◽  
Catalin Iosif Ciontea ◽  
Kamal Shahid ◽  
Florin Iov ◽  
Rasmus Løvenstein Olsen ◽  
...  

Future distribution grids will be subjected to fluctuations in voltages and power flows due to the presence of renewable sources with intermittent power generation. The advanced smart metering infrastructure (AMI) enables the distribution system operators (DSOs) to measure and analyze electrical quantities such as voltages, currents and power at each customer connection point. Various smart grid applications can make use of the AMI data either in offline or close to real-time mode to assess the grid voltage conditions and estimate losses in the lines/cables. The outputs of these applications can enable DSOs to take corrective action and make a proper plan for grid upgrades. In this paper, the process of development and deployment of applications for improving the observability of distributions grids is described, which consists of the novel deployment framework that encompasses the proposition of data collection, communication to the servers, data storage, and data visualization. This paper discussed the development of two observability applications for grid monitoring and loss calculation, their validation in a laboratory setup, and their field deployment. A representative distribution grid in Denmark is chosen for the study using an OPAL-RT real-time simulator. The results of the experimental studies show that the proposed applications have high accuracy in estimating grid voltage magnitudes and active energy losses. Further, the field deployment of the applications prove that DSOs can gain insightful information about their grids and use them for planning purposes.


Sign in / Sign up

Export Citation Format

Share Document