scholarly journals Nonlinear Operation of Resonant Sensors Based On Weakly Coupled Resonators: Theory and Modeling

Author(s):  
Jerome Juillard ◽  
Ali Mostafa ◽  
Pietro Maris Ferreira
2017 ◽  
Vol 6 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Chun Zhao ◽  
Graham S. Wood ◽  
Suan Hui Pu ◽  
Michael Kraft

Abstract. We report a new class of MEMS resonant potential sensor based on the mode localization effect using a 3-degree-of-freedom (DoF) electrically weakly coupled resonator system. As opposed to previously reported electrically coupled 2DoF mode-localized resonant sensors, it can be shown in theory that the 3DoF structure has an improved sensitivity without sacrificing signal transduction, in addition to a reduced nonideal effect with regard to the vibration amplitudes and the motional currents. Experimentally, it has also been shown that several orders of magnitude higher sensitivity can be achieved compared to frequency shift and 2DoF mode-localized sensor. In the best case, we are able to demonstrate over 4 orders of magnitude improvement in sensitivity compared to frequency shift as an output signal. Compared to current state-of-the art 2DoF mode-localized sensor, the highest sensitivity improvement is over 123 times. An estimation of the noise floor of the sensor is 614 µV / √Hz for potential sensing, or an equivalent 57.6e / √Hz for charge sensing, and a dynamic range of 66.3 dB can be achieved. Furthermore, two different approaches for detection were investigated, perturbing the stiffness in the form of either an axial electrostatic force or a change in electrostatic spring. We were able to demonstrate that the approach of changing electrostatic spring is more sensitive than its counterpart.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 310
Author(s):  
Muhammad Mubasher Saleem ◽  
Shayaan Saghir ◽  
Syed Ali Raza Bukhari ◽  
Amir Hamza ◽  
Rana Iqtidar Shakoor ◽  
...  

This paper presents a new design of microelectromechanical systems (MEMS) based low-g accelerometer utilizing mode-localization effect in the three degree-of-freedom (3-DoF) weakly coupled MEMS resonators. Two sets of the 3-DoF mechanically coupled resonators are used on either side of the single proof mass and difference in the amplitude ratio of two resonator sets is considered as an output metric for the input acceleration measurement. The proof mass is electrostatically coupled to the perturbation resonators and for the sensitivity and input dynamic range tuning of MEMS accelerometer, electrostatic electrodes are used with each resonator in two sets of 3-DoF coupled resonators. The MEMS accelerometer is designed considering the foundry process constraints of silicon-on-insulator multi-user MEMS processes (SOIMUMPs). The performance of the MEMS accelerometer is analyzed through finite-element-method (FEM) based simulations. The sensitivity of the MEMS accelerometer in terms of amplitude ratio difference is obtained as 10.61/g for an input acceleration range of ±2 g with thermomechanical noise based resolution of 0.22 and nonlinearity less than 0.5%.


Author(s):  
Hemin Zhang ◽  
Milind Pandit ◽  
Jiangkun Sun ◽  
Dongyang Chen ◽  
Guillermo Sobreviela ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Luigi Garziano ◽  
Alessandro Ridolfo ◽  
Adam Miranowicz ◽  
Giuseppe Falci ◽  
Salvatore Savasta ◽  
...  

AbstractThe coherent nonlinear process where a single photon simultaneously excites two or more two-level systems (qubits) in a single-mode resonator has recently been theoretically predicted. Here we explore the case where the two qubits are placed in different resonators in an array of two or three weakly coupled resonators. Investigating different setups and excitation schemes, we show that this process can still occur with a probability approaching one under specific conditions. The obtained results provide interesting insights into subtle causality issues underlying the simultaneous excitation processes of qubits placed in different resonators.


2015 ◽  
Vol 15 (11) ◽  
pp. 6081-6088 ◽  
Author(s):  
Hemin Zhang ◽  
Weizheng Yuan ◽  
Yongcun Hao ◽  
Honglong Chang

Sign in / Sign up

Export Citation Format

Share Document