FR4-Based Low Phase Noise SISL VCO Using Tunable Weakly Coupled Resonators

Author(s):  
Wentao Liang ◽  
Kaixue Ma ◽  
Xiong Chen ◽  
Yongqiang Wang
Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


2011 ◽  
Vol 25 (9) ◽  
pp. 817-822
Author(s):  
Zhiqiang Wei ◽  
Zushen Liu ◽  
Wu Huang ◽  
Shu Liu
Keyword(s):  

Author(s):  
Samundra K. Thapa ◽  
Baichuan Chen ◽  
Adel Barakat ◽  
Kuniaki Yoshitomi ◽  
Ramesh K. Pokharel

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiangshuoxue Han ◽  
Yang Liu ◽  
Zejiang Deng ◽  
Gehui Xie ◽  
Daping Luo ◽  
...  

Abstract Gain-parameter-dependent transfer functions and phase-noise performances in a mode-locked Yb-doped fiber laser are measured in this study. It is discovered that the corner frequency in the amplitude and phase domains is determined by the absorption coefficient of the gain fiber, when the total absorption and other cavity parameters are fixed. This shows that an oscillator using gain fiber with higher dopant concentration accumulates more phase noise. Furthermore, we present net cavity dispersion-dependent transfer functions to verify the effect of dispersion management on the frequency response. We derive a guideline for optimizing mode-locked fiber laser design to achieve low phase noise and timing jitter.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 310
Author(s):  
Muhammad Mubasher Saleem ◽  
Shayaan Saghir ◽  
Syed Ali Raza Bukhari ◽  
Amir Hamza ◽  
Rana Iqtidar Shakoor ◽  
...  

This paper presents a new design of microelectromechanical systems (MEMS) based low-g accelerometer utilizing mode-localization effect in the three degree-of-freedom (3-DoF) weakly coupled MEMS resonators. Two sets of the 3-DoF mechanically coupled resonators are used on either side of the single proof mass and difference in the amplitude ratio of two resonator sets is considered as an output metric for the input acceleration measurement. The proof mass is electrostatically coupled to the perturbation resonators and for the sensitivity and input dynamic range tuning of MEMS accelerometer, electrostatic electrodes are used with each resonator in two sets of 3-DoF coupled resonators. The MEMS accelerometer is designed considering the foundry process constraints of silicon-on-insulator multi-user MEMS processes (SOIMUMPs). The performance of the MEMS accelerometer is analyzed through finite-element-method (FEM) based simulations. The sensitivity of the MEMS accelerometer in terms of amplitude ratio difference is obtained as 10.61/g for an input acceleration range of ±2 g with thermomechanical noise based resolution of 0.22 and nonlinearity less than 0.5%.


Sign in / Sign up

Export Citation Format

Share Document