Feasibility Analysis of a Novel Cell Equalizer Topology for Plug-In Hybrid Electric Vehicle Energy-Storage Systems

2009 ◽  
Vol 58 (8) ◽  
pp. 3938-3946 ◽  
Author(s):  
P.A. Cassani ◽  
S.S. Williamson
2020 ◽  
Vol 1 (5) ◽  
pp. 14-23
Author(s):  
Godwin K. Ayetor ◽  
Emmanuel Duodu ◽  
John Abban

Three energy storage systems, namely Nickel Zinc, Nickel Metal Hydride and Lithium ion batteries were simulated on ADVISOR (Advanced vehicle simulator) to determine their impact on fuel economy. ADVISOR, a drivetrain analysis tool developed in MATLAB/Simulink for comparing fuel economy and emissions performance and designed by the National Renewable Energy Laboratory by Ford, GM, and Chrysler was used for the simulations. In choosing the batteries for simulations, only the latest technological advanced batteries of NiZn, Li ion and NiMH were used. The results showed that NiZn battery influence in fuel economy and system efficiency far exceeds the other batteries especially for the combined Powertrain. While a lithium ion battery is seen to be well suited for Parallel and Series powertrains at higher speeds, average values for all drive cycle singles out NiZn as a better performing battery. NiMH showed the worst performance. This confirms NiMH, which is the predominant energy storage system today in the HEV industry, is deficient in advancing the growth of HEV’s.Keywords: power trains; hybrid energy storage; hybrid electric vehicle; combined hybrid; parallel hybrid


2018 ◽  
Vol 57 (3) ◽  
pp. 253-271 ◽  
Author(s):  
A Geetha ◽  
C Subramani

The study of electric vehicle and its energy sources are being incorporated in undergraduate and postgraduate syllabuses. This article discusses the basic concepts and design of energy storage systems for electricity based transpiration application. The content of this work elaborates the importance of energy storage systems in electric vehicle and hybridization of energy storage systems i.e. battery and ultracapacitor, which seems to be a promising topic among the final-year project students as well as an emerging research topic among the research scholars worldwide. Hence, this article is prepared in order to trigger those students’ knowledge in multisourced electric vehicle in depth. This study highly focuses on fuzzy logic-based energy sources power split strategy for a multisourced electric vehicle to enhance a better sharing of energy across the multisources with distinct characteristics like high specific power (ultracapacitor) and high specific energy (battery). In general, fuzzy logic controller best suits for a complicated real-time problem. Further it does not require a priori knowledge of a vehicle driving pattern over a time. Hence, the proposed control strategy can provide a satisfactory improvement in vehicle efficiency, assured reduction in stress factor, and energy consumption rate and reduced ultracapacitor sources state of charge difference in all different hybridization topologies. Thus, this paper can help students working on energy management problems of hybridization of energy sources.


2018 ◽  
Vol 64 ◽  
pp. 03003 ◽  
Author(s):  
Nguyen Tam Thanh ◽  
Naumann Maik ◽  
Truong Cong Nam ◽  
Jossen Andreas

Battery energy storage systems (BESSs) are already being deployed for several stationary applications in a technically and economically feasible way. This paper focuses on the revenues of industrial BESSs built from electric vehicle lithiumion batteries with varying states of health. For this analysis, a stationary BESS simulation model is used, that is parameterised with parameters of a 22-kWh automotive battery. The comprehensive model consists of several detailed sub-models, considering battery characteristics, ageing and operating strategies, which allow technical assessment through time series simulation. Therefore, capacity fade and energy losses are considered in this techno-economic evaluation. Potential economically feasible applications of new and second-life batteries, such as photovoltaic home storage, intraday trading and frequency regulation as well as their combined operation are compared. The investigation includes different electricity price scenarios. The combined operation, followed by frequency regulation, is found to have the highest economic viability for the specified electric vehicle battery.


Sign in / Sign up

Export Citation Format

Share Document