Joint Power and Bandwidth Allocation for Amplify-and-Forward Cooperative Communications Using Stackelberg Game

2013 ◽  
Vol 62 (4) ◽  
pp. 1678-1691 ◽  
Author(s):  
Hanan Al-Tous ◽  
Imad Barhumi
Author(s):  
Tingting Yang ◽  
Kailing Yao ◽  
Youming Sun ◽  
Fei Song ◽  
Yang Yang ◽  
...  

Unmanned Aerial Vehicles (UAVs) severing as the relay is an effective technology method to extend the coverage. It can also alleviate the congestion and increase the throughput, especially applied in UAV networks. However, since the energy of UAVs is limited and the resources in UAV networks are scarce, how to optimize the network delay performance under these constraints should be well investigated. Besides, the relationship among different resources, e.g. power and bandwidth, is coupled which makes the optimization more complex. This article investigates the problem of joint power and bandwidth allocation in UAV backhaul networks, which considers both the delay performance and the resource utilization efficiency. Considering the heterogeneous locations characteristics of different UAVs, we formulate the optimization problem as a Stackelberg game. The relay UAV acts as the leader and extended UAVs act as followers. Their utility functions take both the delay durance and the resource consumption into account. To capture the competitive relationship among followers, the sub-game is proved to be an exact potential game and exists Nash equilibriums (NE). The Stackelberg Equilibrium (SE) is proved afterwards. We utilize a hierarchical learning algorithm (HLA) to find out the best resource allocation strategies, which also reduces the computational complexity. Simulation results demonstrate the effectiveness of the proposed method.


Author(s):  
Manav R. Bhatnagar ◽  
Are Hjørungnes

In this chapter, we discuss single and double-differential coding for a two-user cooperative communication system. The single-differential coding is important for the cooperative systems as the data at the destination/relaying node can be decoded without knowing the channel gains. The double-differential modulation is useful as it avoids the need of estimating the channel and carrier offsets for the decoding of the data. We explain single-differential coding for a cooperative system with one relay utilizing orthogonal transmissions with respect to the source. Next, we explain two single-differential relaying strategies: active user strategy (AUS) and passive users relaying strategy (PURS), which could be used by the base-station to transmit data of two users over downlink channels in the two-user cooperative communication network with decode-and-forward protocol. The AUS and PURS follow an improved time schedule in order to increase the data rate. A probability of error based approach is also discussed, which can be used to reduce the erroneous relaying of data by the regenerative relay. In addition, we also discuss how to implement double-differential (DD) modulation for decode-and-forward and amplify-and-forward based cooperative communication system with single source-destination pair and a single relay. The DD based systems work very well in the presence of random carrier offsets without any channel and carrier offset knowledge at the receivers, where the single differential cooperative scheme breaks down. It is further shown that optimized power distributions can be used to improve the performance of the DD system.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yupeng Li ◽  
Zihao Wang ◽  
Ling Luo ◽  
Zhiyong Chen ◽  
Bin Xia ◽  
...  

In this paper, we investigate an energy harvesting scheme in a smart grid based on the cognitive relay protocol, where a primary transmitter scavenges energy from the nature sources and then employs the harvested energy to forward the primary signal. Depending on the intensity of the energy harvesting from nature, a secondary user dynamically acts as a relay node to assist the primary transmission or does not. When the energy is not enough powerful to support the direct transmission between two primary users, the secondary users share the spectrum by assisting the primary transmission. For the relaying scheme, both amplify-and-forward (AF) and decode-and-forward (DF) protocols are investigated. We analytically obtain the exact transmission rates for both primary and secondary networks and derive the exact expressions of the system outage probabilities for both primary and secondary users in the smart grid. Moreover, we develop the analytically optimal bandwidth allocation strategy to maximize the total sum rate of the proposed scheme. Numerical results are presented to demonstrate the performance gain of the proposed scheme over the nonoptimal scheme.


2017 ◽  
Vol 13 (5) ◽  
pp. 155014771770946 ◽  
Author(s):  
Shengchao Shi ◽  
Guangxia Li ◽  
Zhiqiang Li ◽  
Hongpeng Zhu ◽  
Bin Gao

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Jie Li ◽  
Jianrong Bao ◽  
Shenji Luan ◽  
Bin Jiang ◽  
Chao Liu

To improve the reliability and efficiency in cooperative communications, a power optimized single relay selection scheme is proposed by increasing the diversity effort with an improved link-adaptive-regenerative (ILAR) protocol. The protocol determines the forwarding power of a relay node by comparing the signal-to-noise ratio (SNR) at both sides of the node; thus it improves the power efficiency. Moreover, it also proposes a single relay selection strategy to maximize the instantaneous SNR product, which ensures the approximate best channel link quality for good relay forwarding. And the system adjusts the forwarding power in real time and also selects the best relay node participated in the cooperative forwarding. In addition, the cooperation in the protocol is analyzed and the approximate expression of the bit-error-rate (BER) and the outage probability at high SNRs are also derived. Simulation results indicate that the BER and outage probability of the relay selection scheme by the ILAR protocol outperform other contrast schemes of current existing protocols. At BER of 10−2, the proposed scheme with ILAR protocol outperforms those of the decoded-and-forward (DF), the selected DF (SDF), and the amplify-and-forward (AF) protocols by 3.5, 3.5 and 7 dB, respectively. Moreover, the outage probability of the relay system decreases with the growth of the relay number. Therefore, the proposed relay selection scheme with ILAR strategies can be properly used in cooperative communications for good reliability and high power efficiency.


Sign in / Sign up

Export Citation Format

Share Document