A Passive DOA Estimation Algorithm of Underwater Multipath Signals via Spatial Time-frequency Distributions

Author(s):  
Xueyan Han ◽  
Meiqin Liu ◽  
Senlin Zhang ◽  
Ronghao Zheng ◽  
Jian Lan
2021 ◽  
Author(s):  
hamidreza BAKHSHI ◽  
Hannan Lohrasbipeyde

Abstract Direction of arrival estimation (DOA) of LFM signal is an essential task in radar, sonar, acoustics and biomedical. In this paper, a short time Fourier transform multi-step knowledge aided iterative generalized minimum residual (STFT-MS-KAI-GMRES) approach is presented to amend the angle measurement of this signal. A three stage algorithm is proposed. First, the process is initiated with formulating an estimation algorithm for the carrier frequency and chirp rate, followed by calculation of STFT of the output of array element; this yields a spatial time-frequency distribution (STFD) matrix. Next, the Krylov subspace-based estimation algorithm is formulated in the presence of MS-KAI-ESPRIT algorithm. If the number of antennas increases, the accuracy of the algorithm will increase, but we will incur more communication costs. Results are presented showing attainment of the CRLB by STFT-MS-KAI-GMRES the for an adequately large signal to noise ratio (SNR). An important feature of the method presented in the current study is the low computational complexity that has higher suitability for practical applications.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2482 ◽  
Author(s):  
Zhang Chen ◽  
Jinlong Wang

In this paper, we propose a novel indoor passive localization approach called eigenspace-based DOA with direct-path recognition (ES-DPR), based on a DOA estimation algorithm with multiple omnidirectional antennas deployed in a uniform linear array (ULA). To address the multipath propagation interference problem in the indoor environments, we utilize the azimuth and RSS estimation results, which are calculated by using the eigenspace-based DOA (ES-DOA) algorithm, in a novel style. A direct-path bearing recognition algorithm is introduced to identify the real DOA of the signal source in different indoor environments, by combining the azimuth and RSS estimation with ensemble learning methods. Numerical simulations are conducted to verify the validity and superiority of the proposed method. The results show that the proposed ES-DPR method can achieve high resolution and has strong anti-noise capability in dealing with the multipath signals, and the direct-path recognition algorithm is reliable and robust in different indoor environments, even in undetectable direct-path conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ziyue Zhao ◽  
Congfeng Liu

In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document