Two-dimensional DOA estimation algorithm based on time-frequency point selection

Author(s):  
Yong Hou ◽  
Yan Feng ◽  
Jie Hao
2015 ◽  
Vol 51 (25) ◽  
pp. 2084-2086 ◽  
Author(s):  
Zengfei Cheng ◽  
Yongbo Zhao ◽  
Hui Li ◽  
Penglang Shui

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2176 ◽  
Author(s):  
Xiaofeng Gao ◽  
Xinhong Hao ◽  
Ping Li ◽  
Guolin Li

In this paper, an improved two-dimensional (2-D) direction of arrival (DOA) estimation algorithm for L-shaped nested arrays is proposed. Unlike the approach for a classical nested array, which use the auto-correlation matrix (ACM) to increase the degrees of freedom (DOF), we utilize the cross-correlation matrix (CCM) of different sub-arrays to generate two long consecutive virtual arrays. These acquire a large number of DOF without redundant elements and eliminate noise effects. Furthermore, we reconstruct the CCM based on the singular value decomposition (SVD) operation in order to reduce the perturbation of noise for small numbers of samples. To cope with the matrix rank deficiency of the virtual arrays, we construct the full rank equivalent covariance matrices by using the output and its conjugate vector of virtual arrays. The unitary estimation of signal parameters via rotational invariance technique (ESPRIT) is then performed on the covariance matrices to obtain the DOA of incident signals with low computational complexity. Finally, angle pairing is achieved by deriving the equivalent signal vector of the virtual arrays using the estimated angles. Numerical simulation results show that the proposed algorithm not only provides more accurate 2-D DOA estimation performance with low complexity, but also achieves angle estimation for small numbers of samples compared to existing similar methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Guimei Zheng ◽  
Jun Tang

We study two-dimensional direction of arrival (2D-DOA) estimation problem of monostatic MIMO radar with the receiving array which consists of electromagnetic vector sensors (EMVSs). The proposed angle estimation algorithm can be applied to the arbitrary and unknown array configuration, which can be summarized as follows. Firstly, EMVSs in the receiver of a monostatic MIMO radar are used to measure all six electromagnetic-field components of an incident wavefield. The vector sensor array with the six unknown electromagnetic-field components is divided into six spatially identical subarrays. Secondly, ESPRIT is utilized to estimate the rotational invariant factors (RIFs). Parts of the RIFs are picked up to restore the source’s electromagnetic-field vector. Last, a vector cross product operation is performed between electric field and magnetic field to obtain the Pointing vector, which can offer the 2D-DOA estimation. Prior knowledge of array elements’ positions and angle searching procedure are not necessary for the proposed 2D-DOA estimation method. Simulation results prove the validity of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Huaxin Yu ◽  
Xiaofeng Qiu ◽  
Xiaofei Zhang ◽  
Chenghua Wang ◽  
Gang Yang

We investigate the topic of two-dimensional direction of arrival (2D-DOA) estimation for rectangular array. This paper links angle estimation problem to compressive sensing trilinear model and derives a compressive sensing trilinear model-based angle estimation algorithm which can obtain the paired 2D-DOA estimation. The proposed algorithm not only requires no spectral peak searching but also has better angle estimation performance than estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm. Furthermore, the proposed algorithm has close angle estimation performance to trilinear decomposition. The proposed algorithm can be regarded as a combination of trilinear model and compressive sensing theory, and it brings much lower computational complexity and much smaller demand for storage capacity. Numerical simulations present the effectiveness of our approach.


2021 ◽  
Author(s):  
hamidreza BAKHSHI ◽  
Hannan Lohrasbipeyde

Abstract Direction of arrival estimation (DOA) of LFM signal is an essential task in radar, sonar, acoustics and biomedical. In this paper, a short time Fourier transform multi-step knowledge aided iterative generalized minimum residual (STFT-MS-KAI-GMRES) approach is presented to amend the angle measurement of this signal. A three stage algorithm is proposed. First, the process is initiated with formulating an estimation algorithm for the carrier frequency and chirp rate, followed by calculation of STFT of the output of array element; this yields a spatial time-frequency distribution (STFD) matrix. Next, the Krylov subspace-based estimation algorithm is formulated in the presence of MS-KAI-ESPRIT algorithm. If the number of antennas increases, the accuracy of the algorithm will increase, but we will incur more communication costs. Results are presented showing attainment of the CRLB by STFT-MS-KAI-GMRES the for an adequately large signal to noise ratio (SNR). An important feature of the method presented in the current study is the low computational complexity that has higher suitability for practical applications.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3553 ◽  
Author(s):  
Lu Chen ◽  
Daping Bi ◽  
Jifei Pan

To increase the number of estimable signal sources, two-parallel nested arrays are proposed, which consist of two subarrays with sensors, and can estimate the two-dimensional (2-D) direction of arrival (DOA) of signal sources. To solve the problem of direction finding with two-parallel nested arrays, a 2-D DOA estimation algorithm based on sparse Bayesian estimation is proposed. Through a vectorization matrix, smoothing reconstruction matrix and singular value decomposition (SVD), the algorithm reduces the size of the sparse dictionary and data noise. A sparse Bayesian learning algorithm is used to estimate one dimension angle. By a joint covariance matrix, another dimension angle is estimated, and the estimated angles from two dimensions can be automatically paired. The simulation results show that the number of DOA signals that can be estimated by the proposed two-parallel nested arrays is much larger than the number of sensors. The proposed two-dimensional DOA estimation algorithm has excellent estimation performance.


Sign in / Sign up

Export Citation Format

Share Document