scholarly journals Authenticating On-Body IoT Devices: An Adversarial Learning Approach

2020 ◽  
Vol 19 (8) ◽  
pp. 5234-5245 ◽  
Author(s):  
Yong Huang ◽  
Wei Wang ◽  
Hao Wang ◽  
Tao Jiang ◽  
Qian Zhang
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
John Foley ◽  
Naghmeh Moradpoor ◽  
Henry Ochenyi

One of the important features of routing protocol for low-power and lossy networks (RPLs) is objective function (OF). OF influences an IoT network in terms of routing strategies and network topology. On the contrary, detecting a combination of attacks against OFs is a cutting-edge technology that will become a necessity as next generation low-power wireless networks continue to be exploited as they grow rapidly. However, current literature lacks study on vulnerability analysis of OFs particularly in terms of combined attacks. Furthermore, machine learning is a promising solution for the global networks of IoT devices in terms of analysing their ever-growing generated data and predicting cyberattacks against such devices. Therefore, in this paper, we study the vulnerability analysis of two popular OFs of RPL to detect combined attacks against them using machine learning algorithms through different simulated scenarios. For this, we created a novel IoT dataset based on power and network metrics, which is deployed as part of an RPL IDS/IPS solution to enhance information security. Addressing the captured results, our machine learning approach is successful in detecting combined attacks against two popular OFs of RPL based on the power and network metrics in which MLP and RF algorithms are the most successful classifier deployment for single and ensemble models.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bandar Alotaibi ◽  
Munif Alotaibi

Internet of things (IoT) devices and applications are dramatically increasing worldwide, resulting in more cybersecurity challenges. Among these challenges are malicious activities that target IoT devices and cause serious damage, such as data leakage, phishing and spamming campaigns, distributed denial-of-service (DDoS) attacks, and security breaches. In this paper, a stacked deep learning method is proposed to detect malicious traffic data, particularly malicious attacks targeting IoT devices. The proposed stacked deep learning method is bundled with five pretrained residual networks (ResNets) to deeply learn the characteristics of the suspicious activities and distinguish them from normal traffic. Each pretrained ResNet model consists of 10 residual blocks. We used two large datasets to evaluate the performance of our detection method. We investigated two heterogeneous IoT environments to make our approach deployable in any IoT setting. Our proposed method has the ability to distinguish between benign and malicious traffic data and detect most IoT attacks. The experimental results show that our proposed stacked deep learning method can provide a higher detection rate in real time compared with existing classification techniques.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-5
Author(s):  
Rzgar Sirwan ◽  
Muzhir Ani

Facilitating large-scale load-efficient Internet of things (IoT) connectivity is a vital step toward realizing the networked society. Although legacy wide-area wireless systems are heavily based on network-side coordination, such centralized methods will become infeasible in the future, by the unbalanced signaling level and the expected increment in the number of IoT devices. In the present work, this problem is represented through self-coordinating for IoT networks and learning from past communications. In this regard, first, we assessed low-complexity distributed learning methods that can be applied to IoT communications. We presented a learning solution then, for adapting devices’ communication parameters to the environment to maximize the reliability and load balancing efficiency in data transmissions. Moreover, we used leveraging instruments from stochastic geometry to assess the behavior of the presented distributed learning solution against centralized coordinations. Ultimately, we analyzed the interplay amongst traffic efficiency, communications’ reliability against interference and noise over data channel, as well as reliability versus adversarial interference over feedback and data channels. The presented learning approach enhanced both reliability and traffic efficiency within IoT communications considerably. By such promising findings obtained via lightweight learning, our solution becomes promising in numerous low-power low-cost IoT uses.


2022 ◽  
Vol 122 ◽  
pp. 108350
Author(s):  
Prashant W. Patil ◽  
Akshay Dudhane ◽  
Sachin Chaudhary ◽  
Subrahmanyam Murala

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6942
Author(s):  
Motahareh Mobasheri ◽  
Yangwoo Kim ◽  
Woongsup Kim

The term big data has emerged in network concepts since the Internet of Things (IoT) made data generation faster through various smart environments. In contrast, bandwidth improvement has been slower; therefore, it has become a bottleneck, creating the need to solve bandwidth constraints. Over time, due to smart environment extensions and the increasing number of IoT devices, the number of fog nodes has increased. In this study, we introduce fog fragment computing in contrast to conventional fog computing. We address bandwidth management using fog nodes and their cooperation to overcome the extra required bandwidth for IoT devices with emergencies and bandwidth limitations. We formulate the decision-making problem of the fog nodes using a reinforcement learning approach and develop a Q-learning algorithm to achieve efficient decisions by forcing the fog nodes to help each other under special conditions. To the best of our knowledge, there has been no research with this objective thus far. Therefore, we compare this study with another scenario that considers a single fog node to show that our new extended method performs considerably better.


Sign in / Sign up

Export Citation Format

Share Document