scholarly journals A Stacked Deep Learning Approach for IoT Cyberattack Detection

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bandar Alotaibi ◽  
Munif Alotaibi

Internet of things (IoT) devices and applications are dramatically increasing worldwide, resulting in more cybersecurity challenges. Among these challenges are malicious activities that target IoT devices and cause serious damage, such as data leakage, phishing and spamming campaigns, distributed denial-of-service (DDoS) attacks, and security breaches. In this paper, a stacked deep learning method is proposed to detect malicious traffic data, particularly malicious attacks targeting IoT devices. The proposed stacked deep learning method is bundled with five pretrained residual networks (ResNets) to deeply learn the characteristics of the suspicious activities and distinguish them from normal traffic. Each pretrained ResNet model consists of 10 residual blocks. We used two large datasets to evaluate the performance of our detection method. We investigated two heterogeneous IoT environments to make our approach deployable in any IoT setting. Our proposed method has the ability to distinguish between benign and malicious traffic data and detect most IoT attacks. The experimental results show that our proposed stacked deep learning method can provide a higher detection rate in real time compared with existing classification techniques.

2021 ◽  
Vol 13 (7) ◽  
pp. 1236
Author(s):  
Yuanjun Shu ◽  
Wei Li ◽  
Menglong Yang ◽  
Peng Cheng ◽  
Songchen Han

Convolutional neural networks (CNNs) have been widely used in change detection of synthetic aperture radar (SAR) images and have been proven to have better precision than traditional methods. A two-stage patch-based deep learning method with a label updating strategy is proposed in this paper. The initial label and mask are generated at the pre-classification stage. Then a two-stage updating strategy is applied to gradually recover changed areas. At the first stage, diversity of training data is gradually restored. The output of the designed CNN network is further processed to generate a new label and a new mask for the following learning iteration. As the diversity of data is ensured after the first stage, pixels within uncertain areas can be easily classified at the second stage. Experiment results on several representative datasets show the effectiveness of our proposed method compared with several existing competitive methods.


2019 ◽  
Vol 8 (1) ◽  
pp. 486-495 ◽  
Author(s):  
Bimal Kumar Mishra ◽  
Ajit Kumar Keshri ◽  
Dheeresh Kumar Mallick ◽  
Binay Kumar Mishra

Abstract Internet of Things (IoT) opens up the possibility of agglomerations of different types of devices, Internet and human elements to provide extreme interconnectivity among them towards achieving a completely connected world of things. The mainstream adaptation of IoT technology and its widespread use has also opened up a whole new platform for cyber perpetrators mostly used for distributed denial of service (DDoS) attacks. In this paper, under the influence of internal and external nodes, a two - fold epidemic model is developed where attack on IoT devices is first achieved and then IoT based distributed attack of malicious objects on targeted resources in a network has been established. This model is mainly based on Mirai botnet made of IoT devices which came into the limelight with three major DDoS attacks in 2016. The model is analyzed at equilibrium points to find the conditions for their local and global stability. Impact of external nodes on the over-all model is critically analyzed. Numerical simulations are performed to validate the vitality of the model developed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ivandro Ortet Lopes ◽  
Deqing Zou ◽  
Francis A Ruambo ◽  
Saeed Akbar ◽  
Bin Yuan

Distributed Denial of Service (DDoS) is a predominant threat to the availability of online services due to their size and frequency. However, developing an effective security mechanism to protect a network from this threat is a big challenge because DDoS uses various attack approaches coupled with several possible combinations. Furthermore, most of the existing deep learning- (DL-) based models pose a high processing overhead or may not perform well to detect the recently reported DDoS attacks as these models use outdated datasets for training and evaluation. To address the issues mentioned earlier, we propose CyDDoS, an integrated intrusion detection system (IDS) framework, which combines an ensemble of feature engineering algorithms with the deep neural network. The ensemble feature selection is based on five machine learning classifiers used to identify and extract the most relevant features used by the predictive model. This approach improves the model performance by processing only a subset of relevant features while reducing the computation requirement. We evaluate the model performance based on CICDDoS2019, a modern and realistic dataset consisting of normal and DDoS attack traffic. The evaluation considers different validation metrics such as accuracy, precision, F1-Score, and recall to argue the effectiveness of the proposed framework against state-of-the-art IDSs.


2021 ◽  
Vol 3 (3) ◽  
pp. 234-248
Author(s):  
N. Bhalaji

In recent days, we face workload and time series issue in cloud computing. This leads to wastage of network, computing and resources. To overcome this issue we have used integrated deep learning approach in our proposed work. Accurate prediction of workload and resource allocation with time series enhances the performance of the network. Initially the standard deviation is reduced by applying logarithmic operation and then powerful filters are adopted to remove the extreme points and noise interference. Further the time series is predicted by integrated deep learning method. This method accurately predicts the workload and sequence of resource along with time series. Then the obtained data is standardized by a Min-Max scalar and the quality of the network is preserved by incorporating network model. Finally our proposed method is compared with other currently used methods and the results are obtained.


2018 ◽  
Vol 26 (0) ◽  
pp. 257-266
Author(s):  
Shotaro Usuzaki ◽  
Yuki Arikawa ◽  
Hisaaki Yamaba ◽  
Kentaro Aburada ◽  
Shin-Ichiro Kubota ◽  
...  

2021 ◽  
Author(s):  
Bawankar Chetan D ◽  
Sanjeev Kumar Sharma

The paper aims to clarify the relationship between Internet-of-Things devices and Ethereum blockchain. It proposes the arrangement to ensure information transmission among parties in an open system of IoT must be secure using Ethereum. The accompanying joining strategy utilized terminal gadgets as system innovation and Ethereum blockchain stage that delivered back-end, which guarantees high security, accessibility, and protection, supplanting conventional back-end frameworks. The following issues should be considered to prevent the malicious hub from attacking, resist distributed denial-of-service attacks, and prevent firmware backdoor access. This paper proposed a system in which the Peer-to-Peer authentication model, where every IoT node in the system must be authenticated and verified by the proposed framework. The paper provides empirical insights into IoT nodes manufactured in bulk, and they are remaining with their default username and password.


Sign in / Sign up

Export Citation Format

Share Document